ISO TC 184/SC4/WG3 N1074 Supersedes ISO TC 184/SC4/WG3 N792 ISO/IS 10303-227 Product data representation and exchange — Application protocol: Plant spatial configuration **COPYRIGHT NOTICE:** This ISO document is an International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO document nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording, or otherwise, without prior written permission being secured. Requests for permission to reproduce should be addressed to ISO at the address below or ISO's member body in the country of the requester: Copyright Manager ISO Central Secretariat 1 rue de Varembe 1211 Geneva 20 Switzerland telephone: +41 22 749 0111 telefacsimile: +41 22 734 0179 Internet: central@isocs.iso.ch X.400: c=ch; a=400net; p=iso; o=isocs; s=central Reproduction for sales purposes for any of the above-mentioned documents may be subject to royalty payments or a licensing agreement. Violators may be prosecuted. **ABSTRACT:** This document specifies the Application Protocol for the exchange of the spatial configuration of plant systems with a central emphasis on piping systems. This part specifies the information required to construct a piping system, including the shape, material, and arrangements of the components of the system. It also specifies requirements for the physical aspects of other plant systems (e.g., heating, ventilation and airconditioning) needed to design and layout the piping system. **KEYWORDS:** application protocol, heating, ventilation, and air conditioning (HVAC), piping system, process plant, spatial configuration **COMMENTS TO READER**: This document has been reviewed using the internal review checklist (see WG3 N1069) and the project leader checklist (see WG3 N1070) and the convener checklist (see WG3 N1071), and has been determined to be ready for this ballot cycle. **Project Leader:** Mark E. Palmer **Address:** National Institute of Standards and Technology 100 Bureau Dr., Stop 8630 Building 226, Room B306 Gaithersburg, MD 20899 USA **Telephone**: +1 301-975-5858 **Telefacsimile**: +1 301-975-5433 Electronic mail: mark.palmer@nist.gov **Project Editor:** Dr. Burton F. Gischner Address: Electric Boat Corporation Dept. 450 75 Eastern Point Road Groton, CT 06340 USA **Telephone**: +1 860-433-3948 **Telefacsimile**: +1 860-433-4545 Electronic mail: bgischne@ebmail.gdeb.com **Date:** 2001-11-20 ## © ISO 2001 - All rights reserved 2001 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case Postale 56 • CH-211 Genève 20 • Switzerland | Contents Page | |--| | Foreword | | Introductionx | | 1 Scope | | 2 Normative references | | 3 Terms, definitions, and abbreviations .7 3.1 Terms defined in ISO 10303-1 .7 3.2 Terms defined in ISO 10303-31 .7 3.3 Other Definitions .7 3.4 Abbreviations .14 | | 4 Information Requirements174.1 Units of functionality184.2 Application objects364.3 Application assertions212 | | 5 Application interpreted model | | 6 Conformance requirements | | Annex A (normative) AIM EXPRESS expanded listing1027 | | Annex B (normative) AIM short names of entities | | Annex C (normative) Implementation method-specific requirements | | Annex D (normative) Protocol Information Conformance Statement proforma1188 | | Annex E (normative) Information object registration | | Contents cont'd. | Page | |--|------| | Annex F (informative) Application activity model | 1190 | | F.1 Application activity model definitions and abbreviations | 1190 | | F.2 Application activity model diagrams | | | F.3 AAM/ARM Correspondence | | | Annex G (informative) Application reference model | 1237 | | Annex H (informative) AIM EXPRESS-G | 1280 | | Annex J (informative) AIM EXPRESS listing | 1322 | | Annex K (informative) Application protocol usage guide | | | K.1 Identifiers | | | K.2 Units | | | K.3 Mapped_item and representation_item | | | K.4 Interfaces to ISO 13584 and ISO 10303-221 | 1335 | | K.5 Precedence of geometric descriptions | 1338 | | K.6 Lines and line segments | 1338 | | Annex L (informative) Technical discussions | 1340 | | L.1 Fitting parameters and nominal size | 1340 | | L.2 Value range, family definitions and range values | 1342 | | L.3 Piping specifications | 1343 | | L.4 Catalogues items and connectors | 1343 | | L.5 Pipe lengths | 1344 | | L.6 Logical connectivity and relationship to physical design | 1344 | | Bibliography | 1346 | | Figures | Page | |---|------------| | Figure 1 - Data planning model | X | | Figure 2 - Process plant life cycle activity coverage | 1 | | Figure 3 - Base_elbow_support | 37 | | Figure 4 - Base_line_support | 38 | | Figure 5 - Blind_flange | 39 | | Figure 6 - Boss | 41 | | Figure 7 - Bushing | . 43 | | Figure 8 - Cap | 46 | | Figure 9 - Pipe Clamp | 55 | | Figure 10 - Compound_bend_pipe | 56 | | Figure 11 – Socket weld Coupling | 60 | | Figure 12 – Butt-weld Cross | 61 | | Figure 13 - Cross_section_flat_oval | 63 | | Figure 14 - Cross_section_radiused_corner | 64 | | Figure 15 - Dummy_leg | 68 | | Figure 16 - Eccentric_base_elbow_support | 68 | | Figure 17 - Eccentric_reducer | 69 | | Figure 18 - Elbow | 70 | | Figure 19 - Expander_flange | | | Figure 20 - Female_end | | | Figure 21 - Ferrule | 78 | | Figure 22 - Hole_straddle_centreline_orientation | | | Figure 23 - Flanged_end | 81 | | Figure 24 - Raised face flange | 82 | | Figure 25 - Flat face flange | 82 | | Figure 26 - Ring type joint flange | | | Figure 27 - Male and female flange | 83 | | Figure 28 - Tongue and groove flange | 83 | | Figure 29 - Grooved_end | 90 | | Figure 30 - Gusset | | | Figure 31 - Hvac_elbow_90deg_reducing | 100 | | Figure 32 - Hvac_elbow_centred | | | Figure 33 - Hvac_elbow_mitre | | | Figure 34 - Hvac_offset_ogee_centred | | | Figure 35 - Transition - Rectangular to Round | | | Figure 36 - Transition - Rectangle to Round Slanted | | | Figure 37 - Insert | 117 | | | 121 | | Figure 38 - Lap_joint_flange | | | Figure 39 - Lap_joint_stub_end | 121
123 | | Figure 40 - Lateral | | | Figure 41 - Mitre_bend_pipe | 130 | | Figure 42 - Nipple | 131 | | Figure 44 Ovifice flance | 132 | | Figure 44 - Orifice_flange | 134 | | Figure 45 - Orifice_plate | 135 | | Figure 46 - Paddle_blank | 137 | | Figure 47 - Paddle spacer | 138 | © ISO 2001 — All rights reserved v | Figures cont'd. | Page | |--|------| | Figure 48 - Perforated_cap | 139 | | Figure 49 - Butt-weld Pipe Cap | 141 | | Figure 50 - Plate | 168 | | Figure 51 - Plug | 168 | | Figure 52 - Reducer | 172 | | Figure 53 - Reducing_flange | 173 | | Figure 54 - Reinforcing_plate | 174 | | Figure 55 - Ring_spacer | 176 | | Figure 56 - Shoe | 182 | | Figure 57 - Slip_on_flange | 185 | | Figure 58 - Slip_on_jacket_flange | | | Figure 59 - Socket | 187 | | Figure 60 - Socket_weld_flange | 187 | | Figure 61 - Spectacle_blind | 189 | | Figure 62 - Stay | 191 | | Figure 63 - Stopper | 192 | | Figure 64 - Stub_in | 196 | | Figure 65 - Tee | 201 | | Figure 66 - Threaded | 203 | | Figure 67 - Threaded_flange | 203 | | Figure 68 - Trunnion | 205 | | Figure 69 - Union | 206 | | Figure 70 - Weld_neck_flange | 209 | | Figure 71 - Weld_neck_jacket_flange | 209 | | Figure 72 - Y_type_lateral | 210 | | Figure F.1 - IDEF0 basic notation | 1210 | | \mathcal{E} | 1211 | | \mathcal{L} | 1212 | | e e | 1213 | | Figure F.5 - A2: Design and Engineer Plant | | | Figure F.6 - A21: Produce Conceptual Process Design | | | Figure F.7 - A22: Produce Conceptual Plant Design | | | Figure F.8 - A23: Produce Final Process Design | | | Figure F.9 - A24: Produce Final Plant Design | | | Figure F.10 - A242: Finalize Layout and Spatial Design | 1219 | | | 1220 | | | 1221 | | | 1222 | | | 1223 | | | 1224 | | Figure F.16 - A423: Obtain Piping Systems | | | | 1226 | | | 1227 | | | 1228 | | | 1229 | | Figure F.21 - A42334: Complete and Ship Shop Fabricated Piping | 1230 | | Figure F.22 - A5: Manage, Operate, and Maintain Plant | 1231 | | Figures cont'd. | Page | |---|------| | Figure F.23 - A6: Decommission and Dispose of Plant | 1232 | | Figure G.1 - Off-page connectors | | | Figure G.2 - ARM diagram 1 of 42 | | | Figure G.3 - ARM diagram 2 of 42 | | | Figure G.4 - ARM diagram 3 of 42 | | | Figure G.5 - ARM diagram 4 of 42 | | | Figure G.6 - ARM diagram 5 of 42 | | | Figure G.7 - ARM diagram 6 of 42 | | | Figure G.8 - ARM diagram 7 of 42 | | | Figure G.9 - ARM diagram 8 of 42 | | | Figure G.10 - ARM diagram 9 of 42 | | | Figure G.11 - ARM diagram 10 of 42 | | | Figure G.12 - ARM diagram 11 of 42 | | | Figure G.13 - ARM diagram 12 of 42 | | | Figure G.14 - ARM diagram 13 of 42 | | | Figure G.15 - ARM diagram 14 of 42 | | | Figure G.16 - ARM diagram 15 of 42 | | | Figure G.17 - ARM diagram 16 of 42 | | | Figure G.18 - ARM diagram 17 of 42 | 1254 | | Figure G.19 - ARM diagram 18 of 42 | 1255 | | Figure G.20 - ARM diagram 19 of 42 | | | Figure G.21 - ARM diagram 20 of 42 | 1257 | | Figure G.22 - ARM diagram 21 of 42 | 1258 | | Figure G.23 - ARM diagram 22 of 42 | 1259 | | Figure G.24 - ARM diagram 23 of 42 | 1260 | | Figure G.25 - ARM diagram 24 of 42 | | | Figure G.26 - ARM diagram 25 of 42 | 1262 | | Figure G.27 - ARM diagram 26 of 42 | 1263 | | Figure G.28 - ARM diagram 27 of 42 | 1264 | |
Figure G.29 - ARM diagram 28 of 42 | 1265 | | Figure G.30 - ARM diagram 29 of 42 | 1266 | | Figure G.31 - ARM diagram 30 of 42. | 1267 | | Figure G.32 - ARM diagram 31 of 42 | | | Figure G.33 - ARM diagram 32 of 42 | 1269 | | Figure G.34 - ARM diagram 33 of 42 | 1270 | | Figure G.35 - ARM diagram 34 of 42 | 1271 | | Figure G.36 - ARM diagram 35 of 42 | 1272 | | Figure G.37 - ARM diagram 36 of 42 | 1273 | | Figure G.38 - ARM diagram 37 of 42 | | | Figure G.39 - ARM diagram 38 of 42 | 1275 | | Figure G.40 - ARM diagram 39 of 42 | 1276 | | Figure G.41 - ARM diagram 40 of 42 | 1277 | | Figure G.42 - ARM diagram 41 of 42 | | | Figure G.43 - ARM diagram 42 of 42 | | | Figure H.1 - AIM EXPRESS-G diagram 1 of 41 | | | Figure H.2 - AIM EXPRESS-G diagram 2 of 41 | | | Figure H.3 - AIM EXPRESS-G diagram 3 of 41 | 1283 | $\ \, \mathbb{O}\,$ ISO 2001 — All rights reserved vii | Figures cont'd. | Page | |--|------| | Figure H.4 - AIM EXPRESS-G diagram 4 of 41 | 1284 | | Figure H.5 - AIM EXPRESS-G diagram 5 of 41 | 1285 | | Figure H.6 - AIM EXPRESS-G diagram 6 of 41 | | | Figure H.7 - AIM EXPRESS-G diagram 7 of 41 | 1287 | | Figure H.8 - AIM EXPRESS-G diagram 8 of 41 | 1288 | | Figure H.9 - AIM EXPRESS-G diagram 9 of 41 | | | Figure H.10 - AIM EXPRESS-G diagram 10 of 41 | 1290 | | Figure H.11 - AIM EXPRESS-G diagram 11 of 41 | 1291 | | Figure H.12 - AIM EXPRESS-G diagram 12 of 41 | 1292 | | Figure H.13 - AIM EXPRESS-G diagram 13 of 41 | 1293 | | Figure H.14 - AIM EXPRESS-G diagram 14 of 41 | 1294 | | Figure H.15 - AIM EXPRESS-G diagram 15 of 41 | 1295 | | Figure H.16 - AIM EXPRESS-G diagram 16 of 41 | 1296 | | Figure H.17 - AIM EXPRESS-G diagram 17 of 41 | | | Figure H.18 - AIM EXPRESS-G diagram 18 of 41 | | | Figure H.19 - AIM EXPRESS-G diagram 19 of 41 | | | Figure H.20 - AIM EXPRESS-G diagram 20 of 41 | | | Figure H.21 - AIM EXPRESS-G diagram 21 of 41 | | | Figure H.22 - AIM EXPRESS-G diagram 22 of 41 | | | Figure H.23 - AIM EXPRESS-G diagram 23 of 41 | | | Figure H.24 - AIM EXPRESS-G diagram 24 of 41 | | | Figure H.25 - AIM EXPRESS-G diagram 25 of 41 | | | Figure H.26 - AIM EXPRESS-G diagram 26 of 41 | | | Figure H.27 - AIM EXPRESS-G diagram 27 of 41 | | | Figure H.28 - AIM EXPRESS-G diagram 28 of 41 | | | Figure H.29 - AIM EXPRESS-G diagram 29 of 41 | | | Figure H.30 - AIM EXPRESS-G diagram 30 of 41 | | | Figure H.31 - AIM EXPRESS-G diagram 31 of 41 | | | Figure H.32 - AIM EXPRESS-G diagram 32 of 41 | | | Figure H.33 - AIM EXPRESS-G diagram 33 of 41 | | | Figure H.34 - AIM EXPRESS-G diagram 34 of 41 | | | Figure H.35 - AIM EXPRESS-G diagram 35 of 41 | | | Figure H.36 - AIM EXPRESS-G diagram 36 of 41 | | | Figure H.37 - AIM EXPRESS-G diagram 37 of 41 | | | Figure H.38 - AIM EXPRESS-G diagram 38 of 41 | | | Figure H.39 - AIM EXPRESS-G diagram 39 of 41 | | | Figure H.40 - AIM EXPRESS-G diagram 40 of 41 | | | Figure H.41 - AIM EXPRESS-G diagram 41 of 41 | 1321 | | Figure K.1 - Fragment of measure_schema in EXPRESS-G | 1330 | | Figure K.2 - Positioning of shape representations | | | Figure K.3 - Known_source for externally defined items | | | Figure K.4 - Piping line network | | | Figure L.1 - Relationship between logical connectivity and physical connectivity | 1345 | viii #### Foreword ISO (International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3. Draft International Standards adopted by technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this part of ISO may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. International Standard ISO 10303-227 was prepared by Technical Committee ISO/TC 184, *Industrial automation systems and integration*, Subcommittee SC4, *Industrial data*. This second edition of ISO 10303-227 cancels and replaces the first edition (ISO 10303-227:2000), of which it constitutes a technical revision. This International Standard is organized as a series of parts, each published separately. The structure of this international standard is described in ISO 10303-1. Each part of this International Standard is a member of one of the following series: description methods, implementation methods, conformance testing methodology and framework, integrated generic resources, integrated application resources, application protocols, abstract test suites, application interpreted constructs, and application modules. This part is a member of the application protocols series. A complete list of parts of ISO 10303 is available from the Internet: http://www.nist.gov/sc4/editing/step/titles/ Should further parts of ISO 10303 be published, they will follow the same numbering pattern. Annexes A, B, C, D, and E form a normative part of this part of ISO 10303. Annexes F, G, H, J, K, L, and M are for information only. #### Introduction ISO 10303 is an International Standard for the computer-interpretable representation of product information and for the exchange of product data. The objective is to provide a neutral mechanism capable of describing products throughout their life cycle. This mechanism is suitable not only for neutral file exchange, but also as a basis for implementing and sharing product databases, and as a basis for archiving. This part of ISO 10303 is a member of the application protocol series. This part of ISO 10303 specifies an application protocol (AP) for the exchange of the spatial configuration information of process plants, plant systems and ship systems. This information includes the shape, spatial arrangement and connection characteristics of piping, HVAC (heating, ventilation and airconditioning) and cableway system components as well as the shape and spatial arrangement characteristics of other related plant systems (e.g., instrumentation and controls, and structural systems). Users of this standard should understand the basic principles and concepts of plant design, and piping, HVAC and cableway system design. This AP specifies requirements for the exchange of information required for the design, analysis, fabrication and installation of piping components and piping systems and information on the inspection of fabricated piping. This AP specifies requirements for the exchange of information required for the design, analysis and installation of HVAC components and HVAC systems. This AP specifies requirements for the exchange of information required for the design and installation of cableway components and cableway systems. This AP also specifies requirements for the exchange of functional characteristics for HVAC and piping components and systems. The Figure 1 - Data planning model design information for a piping system may specify a pump capable of maintaining a pressure and flow rate. The design may also specify the shape limitations or requirements and the location of the pump in the system, but the design will not include sufficient information for the fabrication of the pump. Figure 1 contains a data planning model that provides a high level description of the requirements for this application protocol, as well as the relationships between the basic data concepts. The data planning model illustrates that a plant consists of plant systems, plant systems consist of plant items and plant items may be connected to one another using connectors on the plant item. The shape and spatial arrangement of plant items are represented by the item shape. The shape representation may use constructive solid geometry (CSG), solid boundary representation (Brep) geometry, wireframe geometry, or combinations of these. The plant item shape may be represented at various levels of abstraction, from an encompassing envelope to a detailed design description. The data planning model further illustrates that the concept of change is a requirement for this application protocol. Change is applicable to each individual plant item, the relationships between plant items, and to groupings of plant items. It applies to all the concepts noted on the data planning model. NOTE This part of ISO 10303 may be used in conjunction with ISO 13584 [13] to identify catalogue items and classifications. This application protocol defines the context, scope, and information requirements for the exchange of design and layout information for a process plant, plant systems, ship systems, system components and equipment between different agents over the life cycle of the facility and specifies the integrated resources necessary to satisfy these requirements. The reasons for exchanging this information include: - exchange of requirements from an owner to an engineering firm; - exchange of cableway, HVAC, piping and equipment designs between a design engineer and a system engineer; - exchange of cableway, HVAC, piping and equipment designs between a design engineer and a fabricator; - exchange of changes to cableway, HVAC, piping and equipment designs between a design engineer and a system engineer or a fabricator; - exchange of piping fabrication information, fabricated piping inspection results and installation information between engineering, fabrication and
construction firms: - integration of designs created by different engineers; - detection of physical interferences of systems and components with components of other systems; - exchange of cableway, HVAC and piping installation information between engineering and construction firms and with owner organizations; — exchange of as-built facility and system configurations among owners, engineering firms and construction firms. Application protocols provide the basis for developing implementations of ISO 10303 and abstract test suites for the conformance testing of AP implementations. Clause 1 defines the scope of the application protocol and summarizes the functionality and data covered by the AP. Clause 3 lists the words defined in this part of ISO 10303 and gives pointers to words defined elsewhere. An application activity model that is the basis for the definition of the scope is provided in annex F. The information requirements of the application are specified in clause 4 using terminology appropriate to the application. A graphical representation of the information requirements, referred to as the application reference model, is given in annex G. Resource constructs are interpreted to meet the information requirements. This interpretation produces the application interpreted model (AIM). This interpretation, given in 5.1, shows the correspondence between the information requirements and the AIM. The short listing of the AIM specifies the interface to the integrated resources and is given in 5.2. Note that the definitions and EXPRESS provided in the integrated resources for constructs used in the AIM may include select list items and subtypes which are not imported into the AIM. The expanded listing given in annex A contains the complete EXPRESS for the AIM without annotation. A graphical representation of the AIM is given in annex H. Additional requirements for specific implementation methods are given in annex C. # Industrial automation systems and integration — Product data representation and exchange — Part 227: Application protocol — Plant spatial configuration ## 1 Scope This part of ISO 10303 specifies the use of the integrated resources necessary for the scope and information requirements for the exchange of spatial configuration information of process plants, plant systems and ship systems. The spatial configuration information focuses on the shape and spatial arrangement of the components of the systems. The spatial configuration information principally supports the engineering, fabrication and installation life-cycle phases, but may be useful in the downstream life-cycle phases of operations and maintenance. This part accommodates the disciplines of plant design, system design, fabrication, inspection, installation and construction. NOTE 1 The application activity model in annex F provides a graphical representation of the processes and information flows that are the basis for the definition of the scope of this part of ISO 10303. NOTE 2 Figure 2 illustrates the basic life-cycle stages of a process plant. Plant life-cycle phases for which AP 227 is useful are enclosed in the rounded rectangles labeled "AP 227 ed2". Figure 2 - Process plant life cycle activity coverage The following are within the scope of this part of ISO 10303: - the shape and spatial arrangement of items in systems within a process plant or ship; - explicit representation of the 3D shape of systems and components; - explicit representation of the 3D external shape of system components and equipment. The representation may include envelope, outline and detailed representations as well as a parametric representation of the external shape. - the functional configuration of HVAC and piping systems and the relationship of the functional configurations to the physical system design; - information required for the design, analysis, fabrication and installation of piping components and piping systems; - information on the inspection of fabricated piping; NOTE 3 The functional configuration entails connectivity, sequencing, component size, and schedule, and may include other information, such as equipment tag numbers and requirements to perform consistency checks between the functional and physical representations of the design. - basic engineering data as needed for spatial layout and configuration of systems; - references to functional requirements of plant systems, such as stream data and operational characteristics; - references to or designation of functional characteristics of components and connected equipment as required for system design; - the identification, shape, location, and orientation of reserved areas, volumes, and space-occupying elements of a plant; - references to specifications, standards, guidelines, or regulations for the systems, components, or connected equipment that may specify physical characteristics or performance characteristics of the system or component; EXAMPLE 1 Physical characteristics include material and welding requirements. EXAMPLE 2 References to standards include ISO 10303-221 [3] and ISO 13584 [13]. - the identification of catalogue information associated with a component; - the identification of catalogues that contain component definitions; - status of components and connected equipment and of their spatial arrangement; NOTE Status labels are used by project management to monitor and control the execution of the project. Labels such as "preliminary", "in-work", and "released for fabrication" are used to designate the degree of completeness or suitability for further action of the design or layout that the label is applied to. - connections and connection requirements for cableway, HVAC and piping components and equipment; - definition of components in sufficient detail to support the acquisition of the components; - change request approval, notification, and verification, tracking of differences between versions of system information, and tracking of changes to plant items and attributes of plant items; NOTE Only the specific change information described in this part of ISO 10303 is in scope. The change process itself is not in scope. - specification of the chemical composition of the streams carried by the piping and HVAC systems in sufficient detail to evaluate the suitability of components for the desired process; - data exchange; - external reference to classification systems; - external reference to standard parts; - external reference to representations of standard parts. The following are outside the scope of this part of ISO 10303: — schematic representations; EXAMPLE Schematic representations include P&IDs and process flow diagrams (PFDs). - the contents of specifications, standards, guidelines, or regulations; - preparation of piping specifications; - logistics and materials management; - specification of the chemical composition of the streams carried by the piping system in sufficient detail for process flow design; - process design and conceptual engineering; EXAMPLE Process design includes activities such as process material and heat balances, process flow diagram development, and determination of equipment sizes. — testing, commissioning, handover, maintenance, and disposal of a plant; - plant operating procedures; - commercial aspects of procurement and contracting; EXAMPLE Commercial aspects include pricing, terms and conditions, and payment schedules. - information necessary to manage the evolution and growth of data sets through the life-cycle of a product or project other than indications of changes and approvals; - history data; - internal design and maintenance of equipment. #### 2 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO/IEC 8824-1:1995, Information technology — Open systems interconnection — Abstract syntax notation one (ASN.1): Specification of basic notation. ISO 10303-1:1994, *Industrial automation systems and integration* — *Product data representation and exchange* — *Part 1: Overview and fundamental principles.* ISO 10303-11:1994/Cor 1:1999, Industrial automation systems and integration — Product data representation and exchange — Part 11: Description methods: The EXPRESS language reference manual. ISO 10303-21:1994/Cor 1:1996, Industrial automation systems and integration — Product data representation and exchange — Part 21: Implementation methods: Clear text encoding of the exchange structure. ISO 10303-31:1994, Industrial automation systems and integration — Product data representation and exchange — Part 31: Conformance testing methodology and framework: General concepts. ISO 10303-41:1994, Industrial automation systems and integration — Product data representation and exchange — Part 41: Integrated generic resources: Fundamental of product description and support. ISO 10303-42:2000, Industrial automation systems and integration — Product data representation and exchange — Part 42: Integrated generic resources: Geometric and topological representation. ISO 10303-43:2000, Industrial automation systems and integration — Product data representation and exchange — Part 43: Integrated generic resources: Representation structures. ISO 10303-44:2000, Industrial automation systems and integration — Product data representation and exchange — Part 44: Integrated generic resources: Product structure configuration. ISO 10303-45:1998, Industrial automation systems and
integration — Product data representation and exchange — Part 45: Integrated generic resources: Materials. ISO 10303-46:1994, Industrial automation systems and integration — Product data representation and exchange — Part 46: Integrated generic resources: Visual presentation. ISO 10303-47:1997, Industrial automation systems and integration — Product data representation and exchange — Part 47: Integrated generic resources: Shape variation tolerances. ISO 13584-24:1995, Industrial automation systems and integration — Parts library — Part 24: Logical model of supplier library. ISO 13584-42:1995, Industrial automation systems and integration — Parts library — Part 42: Methodology for structuring part families. ## 3 Terms, definitions, and abbreviations #### 3.1 Terms defined in ISO 10303-1 | This part of ISO 10303 makes use of the following terms defined in ISO 10303-1: | |--| | — abstract test suite (ATS); | | — application; | | — application activity model (AAM); | | — application interpreted model (AIM); | | — application protocol (AP); | | — application reference model (ARM); | | — conformance class; | | — implementation method; | | — integrated resource; | | — product; | | — product data; | | — protocol information and conformance statement (PICS); | | — unit of functionality (UoF). | | 3.2 Terms defined in ISO 10303-31 | | This part of ISO 10303 makes use of the following terms defined in ISO 10303-31: | | — conformance testing; | #### 3.3 Other definitions — implementation under test (IUT). For the purposes of this part of ISO 10303, the following definitions apply: #### 3.3.1 actual descriptive adjective that, when applied to an item, indicates that the item exists at some time in the real world. An actual plant item (see **3.3.31**) has properties that can be measured or observed NOTE 1 The terms actual, planned (see **3.3.31**), and required (see **3.3.41**) loosely reflect life-cycle stages of an item. NOTE 2 Within the scope of this part of ISO 10303, being actual can be specified for an item that is: - a plant item; - an association between plant items such as a connection; - an activity or an association between a plant item and an activity; - a possession of a property by a plant item or activity. NOTE 3 An item cannot be both actual and planned (see **3.3.31**). An actual item can be the realization of an planned item. #### 3.3.2 assembly a set of items that have a relationship to each other apart from being members of the same set NOTE Within the scope of this part of ISO 10303, an assembly can be items that are plant items (see **3.3.32**). ## 3.3.3 basic engineering data parameters and descriptions that specify design (see 3.3.11) characteristics and boundaries for the plant item (see 3.3.32) that are required to support piping system (see 3.3.30) design EXAMPLE Piping system design parameters and descriptions include design temperature, design pressure, design codes, and weights. #### 3.3.4 branch a portion of a piping system (see 3.3.30) that diverges or divides from the main flow path NOTE A branch may have a different identifier from that of the main flow path. #### 3.3.5 catalogue a collection (see **3.3.6**) of items or an electronic or paper document that contains information about a collection of items NOTE Within the scope of this part of ISO 10303, a catalogue can be a collection of typical or reference plant items (see **3.3.32**), that the definition of a specific occurrence of a plant item in the design (see **3.3.11**) of a process plant (see **3.3.37**) can be selected from. #### 3.3.6 collection a set of things that do not have any relationship to each other apart from being members of the same set NOTE Within the scope of this part of ISO 10303, a collection can be items that are plant items (see **3.3.32**). #### 3.3.7 component an item that may be part of another item NOTE 1 Within the scope of this part of ISO 10303, an item that is a component can be part of a functional (see **3.3.13**) or physical (see **3.3.24**) plant item (see **3.3.32**) or part of a process material (see **3.3.36**) that is a mixture. NOTE 2 A component can itself have components. #### 3.3.8 connection an association between two items that enables the flow of process material (see **3.3.36**), energy, mechanical loads, or signals between them or constrains their relative positions NOTE 1 Within the scope of this part of ISO 10303, a connection can be between either functional (see **3.3.13**) or physical (see **3.3.24**) plant items (see **3.3.32**). NOTE 2 A connection can be the result of a physical (see **3.3.24**) joining. NOTE 3 A functional connection can exist between two plant items (see **3.3.32**) without a physical (see **3.3.24**) joining of the plant items. #### 3.3.9 connector a physical (see **3.3.24**) or functional (see **3.3.13**) property of a plant item (see **3.3.32**) that links it to another plant item, or to a compatible connector on another plant item. This linkage enables the flow of energy, mechanical loads, process material (see **3.3.36**), or signals through the connected plant items #### 3.3.10 construction material the substance or substances that a physical (see 3.3.24) plant item (see 3.3.32) is made from #### **3.3.11** design a representation (see **3.3.40**) of a process plant (see **3.3.37**), portion of a process plant, or plantitem (see **3.3.32**), that is created for a specific purpose and uses a consistent syntax and symbology NOTE A PFD is a design that represents the flow and reaction of process materials (see **3.3.36**). A P&ID is a design that represents the logical functionality of a piping system (see **3.3.30**). A three-dimensional geometric model is a design that represents the physical (see **3.3.24**) shape and arrangement of the components (see **3.3.7**) of a process plant (see **3.3.37**) or plant system (see **3.3.33**). ## 3.3.12 equipment a plant item (see **3.3.32**) that carries out an operation and that is treated as a single item for the purpose of design (see **3.3.11**), acquisition, or operation NOTE An equipment has both physical (see **3.3.24**) and functional (see **3.3.13**) aspects. #### 3.3.13 functional descriptive adjective that, when applied to an item, refers to the actions, activities, or capabilities, that the item provides or may provide to fulfill a purpose NOTE In the process plant industry, a plant item (see **3.3.32**) that provides functional capability in a process plant (see **3.3.37**) is typically denoted by a tag number. #### 3.3.14 functional characteristics nomenclature, codes, and named values that describe or specify the performance or behaviour of a plant item (see **3.3.32**) EXAMPLE Functional characteristics include flow rates, operating pressure, and maximum temperature. ## 3.3.15 functional requirements nomenclature, codes, and named values that describe or specify the performance or behaviour to be met by a plant item (see **3.3.32**) #### 3.3.16 instrument an individually identifiable plant item (see **3.3.32**) or combination of plant items, that is part of a system that monitors or controls a process plant (see **3.3.37**) EXAMPLE Instruments include items such as control valves, sensors, and gauges. #### 3.3.17 insulation a quantity of matter or space that provides resistance to the flow of heat, electricity, sound, or mechanical vibration #### 3.3.18 line a logical component (see 3.3.7) of a piping system (see 3.3.30) that is composed of a collection (see 3.3.6) of line segments (see 3.3.19) NOTE Further explanation of lines is provided in K.7. #### 3.3.19 line segment an element of a line (see 3.3.18) NOTE Further explanation of line segments is provided in K.7. #### 3.3.20 line segment termination one of two logical end-points of a line segment (see 3.3.19) NOTE Lines (see **3.3.18**) are composed of line segments (see **3.3.19**). Line segments are connected through line segment terminations. #### 3.3.21 line segment termination connection a logical linkage between two line segments (see 3.3.19) or between a line segment and a plant item (see 3.3.32) #### 3.3.22 material a quantity of matter #### 3.3.23 material stream a flow of process material (see 3.3.36) past a defined point along a path #### 3.3.24 physical descriptive adjective that, when applied to an item, refers to a set of characteristics, properties, or traits of the item EXAMPLE Characteristics include weight, size, and location and orientation of the item. NOTE In the process plant industry, a physical object that is, or may be, installed as a plant item (see **3.3.32**), and can be identified by a serial number. ## 3.3.25 pipe a plant item (see **3.3.32**) that is hollow and approximately cylindrical, that may have a constant cross-section along its extent, and that conveys fluid, vapour, or particulate material (see **3.3.22**) NOTE Heating, ventilation, and air conditioning (HVAC) duct that has a rectangular cross section is not a pipe. ## 3.3.26 pipe fitting a plant item (see **3.3.32**) that is used, or is intended to be used, to join or terminate pipes (see **3.3.25**) or other items in a piping system (see **3.3.30**) or equipment (see **3.3.12**) connectors (see **3.3.9**), or to provide changes of pipe direction or branching within a piping system ## 3.3.27 piping and instrumentation diagram a piping and instrumentation diagram schematic representation (see **3.3.40**) that consists, as a minimum, of the functional (see **3.3.13**) connection (see **3.3.8**) and assembly (see **3.3.2**) of plant items (see **3.3.32**), and the identification of principal plant items NOTE The piping and instrumentation diagram can also present the functional (see **3.3.13**) and physical (see **3.3.24**) aspects of plant items (see **3.3.32**). ## 3.3.28 piping class a functional (see **3.3.13**) performance envelope defined by a set or range of common
physical (see **3.3.24**) properties, and an identification of the pipes (see **3.3.25**), pipe fittings (see **3.3.26**), and valves that have these properties EXAMPLE 1 Piping classes include stainless steel, cast iron, and carbon steel. EXAMPLE 2 Physical properties of a piping class include diameter, pressure, and temperature. ## 3.3.29 piping specification a definition of various aspects of a piping system (see **3.3.30**). It is also used to refer to a document or electronic file that contains such a definition NOTE Piping system (see **3.3.30**) aspects that may be included in a piping specification include design (see **3.3.11**) pressures and temperatures, piping construction materials (see **3.3.10**), pipe wall thicknesses or schedules, types of fittings to be used, types of valves and flanges, valve and flange pressure rating requirements, and fabrication, examination, testing, inspection, cleaning, and installation requirements, including the requirements for seismic installations, where applicable. ## 3.3.30 piping system a plant system (see **3.3.33**) that performs a transport function, and that is composed primarily of pipes (see **3.3.25**), pipe fittings (see **3.3.26**), and valves subject to the same set or sets of design (see **3.3.11**) conditions ## 3.3.31 planned descriptive adjective that, when applied to an item, indicates that an item that has been designed or predicted NOTE 1 The terms actual (see **3.3.1**), planned (see **3.3.31**), and required (see **3.3.41**) loosely reflect life-cycle stages of an item. NOTE 2 Within the scope of this part of ISO 10303, being planned can be specified for an item that is: - a plant item (see **3.3.32**); - an association between plant items such as a connection (see 3.3.8); - an activity or an association between a plant item and an activity; - a possession of a property by a plant item or activity. NOTE 3 An item cannot be both actual (see **3.3.1**) and planned. An actual item can be the realization of a planned item. #### 3.3.32 plant item a physical (see **3.3.24**) object or volume of space that is, or is intended to be, a part of a process plant (see **3.3.37**). A plant item can be an assembly (see **3.3.2**) of other plant items. A plant item has both physical (see **3.3.24**) and functional (see **3.3.13**) aspects NOTE If a plant item is a volume of space, it may or may not contain other plant items. #### 3.3.33 plant system a part of a process plant (see **3.3.37**) that provides or performs, or is intended to provide or perform, a service or function contributing to, or enabling the operation of, a process plant. A plant system consists of an assembly (see **3.3.2**) of one or more plant items (see **3.3.32**). A plant system has both physical (see **3.3.24**) and functional (see **3.3.13**) aspects #### 3.3.34 process activity an activity that transforms or transports process material (see **3.3.36**) between its input to a process plant (see **3.3.37**) as feed stock and its output from a process plant as a product or waste NOTE The transformation can be a change of physical (see **3.3.24**) state, a physical separation or mixing, or a biological or chemical process. ## 3.3.35 process flow diagram a schematic representation (see **3.3.40**) that consists, as a minimum, of the connection of process activities (see **3.3.34**) by material streams (see **3.3.23**) and the identification of plant items (see **3.3.32**) that perform the process activities NOTE 1 The process activities (see **3.3.34**) shown on a process flow diagram can also be called unit operations. NOTE 2 The process flow diagram can also present: - properties of process activities (see **3.3.34**) and material streams (see **3.3.23**) for particular cases; - measurements that are made upon process activities and material streams; - the flow of signals between sensors, controllers, and actuators; - the control logic that is implemented by a controller. #### 3.3.36 process material the material (see 3.3.22) that is transformed or transported by a process activity (see 3.3.34) #### 3.3.37 process plant an assembly (see **3.3.2**) of one or more plant systems (see **3.3.33**) and plant items (see **3.3.32**) that can, or is intended to perform, a chemical, physical (see **3.3.24**) or transport process. A process plant is identified as a single unit for the purposes of management and ownership. A process plant has both physical and functional (see **3.3.13**) aspects ## 3.3.38 range of values a specification of a value range for a given dimension, parameter, or nominal size, for the purpose of defining a family of plant items (see **3.3.32**) NOTE This is done by specifying two dimensional values for a given parameter. One dimension has a name with a value of minimum_<parameter name>, such as minimum_-flange_inside_diameter. The other dimension has a name with a value of maximum_-<parameter name>, such as maximum_flange_inside_diameter. #### 3.3.39 range value an indication of variation of a dimension, parameter, or nominal size on an actual physical (see **3.3.24**) plant item (see **3.3.32**). A range value is not a toleranced dimension. A range value, like the range of values (see **3.3.38**), has a minimum and maximum value. It does not, however, indicate a family of plant items NOTE The attributes that use range values in 4.2 are differentiated from those attributes that use range of values (see **3.3.38**) by a explanatory note that follows the attribute definition. EXAMPLE Insulation (see **3.3.17**) may be described as 6 inches thick, but in reality it may be 5-7 inches thick. Range values permit this to be specified. #### 3.3.40 representation a description, drawing, or depiction of something ## 3.3.41 required descriptive adjective that, when applied to an item, indicates that an item is essential or necessary, i.e., it has to be provided to satisfy a functional (see **3.3.13**) need NOTE 1 The terms actual (see **3.3.1**), planned (see **3.3.31**), and required loosely reflect life-cycle stages of an item. NOTE 2 Within the scope of this part of ISO 10303, being required can be specified for an item that is: - a plant item (see **3.3.32**); - an association between plant items such as a connection (see **3.3.8**); - an activity or an association between a plant item and an activity; - a possession of a property by a plant item or activity. #### 3.3.42 site an area of land or water that one or more process plants (see 3.3.37) is or may be situated on ## 3.3.43 spatial configuration the location, orientation, and relative position of the components (see **3.3.7**) of a plant system (see **3.3.33**) #### 3.4 Abbreviations For the purposes of this part of ISO 10303, the following abbreviations apply: AAM application activity model AE architectural engineering AEC architecture, engineering, and construction AIC application interpreted construct AIM application interpreted model AISC American Institute of Steel Construction ANSI American National Standards Institute AP application protocol ARM application reference model ASTM American Society for Testing and Materials ATS abstract test suite Brep boundary representation BOP bottom of pipe CAD computer-aided design CC conformance class COP centre of pipe CSG constructive solid geometry ECN engineering change notice EPA Environmental Protection Agency FDA Food and Drug Administration GIS geographic information system GUID globally unambiguous identifier HVAC heating, ventilation, and air conditioning id identifier ICOM input, control, output, or mechanism IEC International Electrotechnical Commission ISO International Organization for Standardization OSHA Occupational Safety and Health Administration PFD process flow diagram P&ID piping and instrumentation diagram PICS protocol information and conformance statement PIEBASE Process Industry Executive for achieving Business Advantage using Standards for data Exchange PSI pounds per square inch UoF unit of functionality UTM universal transverse mercator ## 4. Information requirements This clause specifies the information required for the exchange of plant spatial configuration information between application systems. The information requirements are specified as a set of units of functionality, application objects, and application assertions. These assertions pertain to individual application objects and to relationships between application objects. The information requirements are defined using the terminology of the subject area of this application protocol. NOTE 1 A graphical representation of the information requirements is given in annex G. NOTE 2 The information requirements correspond to those of the activities identified as being in the scope of this application protocol in annex F. NOTE 3 The mapping table specified in 5.1 shows how the integrated resources are used to meet the information requirements of this application protocol. The use of the integrated resources introduces additional requirements that are common to application protocols. ## 4.1. Units of functionality This subclause specifies the UoFs for the plant spatial configuration application protocol. This part of ISO 10303 specifies the following units of functionality: | — cableway_component_characterization UoF; | |---| | — change_information UoF; | | — connection UoF; | | — connector UoF; | | — hvac_component_characterization UoF; | | — hvac_system_functional_characterization UoF; | | — hybrid_shape_representation UoF; | | <pre>— piping_component_characterization UoF;</pre> | | — piping_inspection UoF | | — piping_system_functional_characterization UoF; | | — plant_characterization UoF; | | <pre>— plant_csg_shape_representation UoF;</pre> | | — plant_item_characterization UoF; | | — shape UoF; | | — site_characterization UoF. | | | The units of functionality and a description of the functions that each UoF supports are given below. The
application objects included in the UoFs are defined in 4.2. ## 4.1.1. cableway_component_characterization UoF The cableway_component_characterization UoF describes the physical representation of cableway systems and elements. This UoF extends the plant_characterization UoF for characterization of cableway systems and extends the plant_item_characterization UoF for representation of cableway components. The geometry of cableway components is specified using the shape UoF. The following application objects are used by the cableway_component_characterization UoF: | — Cable; | 3-22' | |--|-------| | — Cableway_component; | | | — Cableway_connector; | | | — Cableway_fitting; | | | — Cableway_piece; | | | — Cableway_size_description; | | | — Conduit; | | | — Conduit_size_description; | | | — Raceway; | | | — Raceway_lane; | | | — Raceway_size_description. | | | 4.1.2. change_information UoF | | | The change_information UoF describes information such as the design change requests and approvals for modifications to Plant objects, Plant_item objects, Plant_system objects, and ot components associated with the Plant. | her | | The following application objects are used by the change_information UoF: | | | — Change; | | | — Change_approval; | | | — Change_item; | | | — Change_life_cycle_stage; | | | — Change_life_cycle_stage_sequence; | | | — Change_life_cycle_stage_usage; | | | — Changed_line_assignment; | | | — Changed_line_branch_connection; | | | — Changed_line_plant_item_branch_connection; | | — Changed_line_plant_item_connection; ## ISO/CD 10303-227 — Changed_piping_specification; — Changed_piping_system_line; — Changed_piping_system_line_segment; — Changed_piping_system_line_segment_termination; — Changed planned physical plant; — Changed_plant; — Changed_plant_item; — Changed_plant_item_collection; — Changed_plant_item_connection; — Changed_plant_item_connector; — Changed_plant_item_location; — Changed_plant_item_shape; — Changed plant process capability; — Changed_plant_system; — Changed_reference_geometry; — Changed_required_material_description; — Changed_site; #### 4.1.3. connection UoF — Changed sub plant relationship. The connection UoF describes the physical linkage or connectivity between Plant_item objects. Plant_item objects have connectors. Two connectors of a compatible type are attached to form a connection. The sequence of connections establishes the physical connectivity of items within Plant_system objects. The following application objects are used by the connection UoF: — Connection_definition; — Changed_site_feature; — Changed_sited_plant; | | ISO/CD 10303-227 | |---|--------------------| | — Electricity_transference; | | | — Flexible_connection; | | | — Fluid_transference; | | | — Functional_connection_definition_satisfaction; | | | — Functional_connection_occurrence_satisfaction; | | | — Load_transference; | | | — Locked_orientation_connection; | | | — Plant_item_connection; | | | — Plant_item_connection_occurrence. | | | 4.1.4. connector UoF The connector UoF is the information about the part of a Plant_item that is interconnect with another Plant_item. This UoF describes the physical features. | s of Plant_item | | objects that are designed to connect or mate with a similar physical feature on object. | another Plant_item | | The following application objects are used by the connector UoF: | | | — Branch_hole; | | | — Buttweld; | | | — Catalogue_connector; | | | — Clamped; | | | — Connector_definition; | | | — Cross_section_flat_oval; | | | — Cross_section_non_standard; | | | — Cross_section_radiused_corner; | | | — Cross_section_rectangular; | | | — Cross_section_round; | | | — Cross_section_triangular; | | | — Electrical_connector; | | — Female_end; # ISO/CD 10303-227 — Flanged; — Flanged_end; — Flared_end; Functional_connector; Functional_connector_definition_satisfaction; Functional_connector_occurrence_satisfaction; — Grooved_end; — Hvac_branch_connection; — Hvac_connector; — Hvac_connector_service_characteristic; — Hvac_cross_section; — Hvac_plant_item_branch_connector; — Hvac_plant_item_connector; — Male_end; - Node; Physical_connector; — Piping_connector; — Piping_connector_service_characteristic; — Plant_item_connector; — Plant_item_connector_occurrence; — Pressure_fit; — Service_operating_case; — Socket; — Structural_load_connector; — Stub_in; — Threaded. # 4.1.5. hvac_component_characterization UoF The hvac_component_characterization UoF describes the physical representation of HVAC systems and elements. This UoF extends the plant_item_characterization UoF for representation of Hvac_component objects. The geometry of Hvac_component objects is specified using the shape UoF. The following application objects are used by the hvac component characterization UoF: — Hvac_access_opening; — Hvac_bend; — Hvac_component; — Hvac_component_thickness; — Hvac_coupling; — Hvac_elbow_90deg_reducing; — Hvac_elbow_centred; — Hvac elbow mitre; — Hvac_end_fitting; — Hvac_equipment; - Hvac_fitting; — Hvac_flow_control_device; — Hvac gasket; — Hvac_instrument; — Hvac offset centred; — Hvac_offset_ogee_centred; — Hvac_takeoff; — Hvac_transition; — Hvac_transition_slanted; — Splitter. # 4.1.6. hvac_system_functional_characterization UoF The hvac_system_functional_characterization UoF describes the functional representation of HVAC systems and elements. It extends the plant_characterization UoF. | The following application objects are used by the hvac_system_functional_characterization UoF: | |--| | — Hvac_plant_item_branch_connection; | | — Hvac_plant_item_connection; | | — Hvac_plant_item_termination; | | — Hvac_section_branch_termination; | | — Hvac_section_segment; | | — Hvac_section_segment_insulation; | | — Hvac_section_segment_termination; | | — Hvac_section_termination; | | — Hvac_section_to_section_connection; | | — Hvac_section_to_section_termination; | | — Hvac_specification; | | — Hvac_system_section. | | 4.1.7. hybrid_shape_representation UoF | | The hybrid_shape UoF specifies the representation of Plant_item shapes using Brep geometry and topology. | | The following application objects are used by the hybrid_shape UoF: | | — B_rep_element; | | — Conic; | | — Curve; | | — Free_form_curve; | | — Line; | | — Point; | | — Polygon; | | — Surface; | | |---------------|---| | — Vector; | | | — Wire_and_ | _surface_element. | | 4.1.8. | piping_component_characterization UoF | | system withir | omponent_characterization UoF describes the individual elements of the Piping_n a Plant. Piping_component objects include pipes, fittings, valves, in-line and other elements that regulate, control, or convey Piping_system fluids. | | The following | g application objects are used by the piping_component_characterization UoF: | | — Base_elbo | w_support; | | — Base_line_ | _support; | | — Blank; | | | — Blind_flan | ige; | | — Boss; | | | — Bushing; | | | — Cap; | | | — Compound | d_bend_pipe; | | — Coupling; | | | — Cross; | | | — Dummy_l | eg; | | — Eccentric_ | _base_elbow_support; | | — Eccentric_ | reducer; | | — Elbow; | | | — Expander_ | _flange; | | — Family_de | efinition; | | — Ferrule; | | | — Fitting; | | | — Flange; | | © ISO 2001 — All rights reserved # ISO/CD 10303-227 — Gasket; — Gusset; — Inline_equipment; — Inline_instrument; — Insert; — Inside_and_thickness; — Lap_joint_flange; — Lap_joint_stub_end; — Lateral; — Lined_piping; —Lug; — Mitre_bend_pipe; — Nipple; - Olet; — Orifice_flange; — Orifice_plate; — Outside_and_thickness; - Paddle_blank; — Paddle_spacer; — Perforated_plate; — Pipe; — Pipe_closure; — Piping_component; — Piping_size_description; — Piping_spool; — Piping_support; | — Plate; | 150/CD 10303-22 | |----------------------------------|-----------------| | — Plug; | | | — Pressure_class; | | | — Reducer; | | | — Reducing_flange; | | | — Reinforcing_component; | | | — Reinforcing_plate; | | | — Ring_spacer; | | | — Schedule; | | | — Shoe; | | | — Slip_on_flange; | | | — Slip_on_jacket_flange; | | | <pre>— Socket_weld_flange;</pre> | | | — Spacer; | | | — Specialty_item; | | | — Spectacle_blind; | | | — Stay; | | | — Stopper; | | | — Straight_pipe; | | | — Swept_bend_pipe; | | | — Tee; | | | — Threaded_flange; | | | — Union; | | | — Valve; | | | — Weld_neck_flange; | | | — Weld_neck_jacket_flange; | | | — Y_type_lateral. | | # 4.1.9. piping_inspection UoF The piping_inspection UoF describes inspection information and inspection documentation for Piping_component objects and Piping_spool objects. The following application objects are used by the hvac_component_characterization UoF: Connection_inspection_record; Inspection_condition; Piping_component_inspection_record; Piping_spool_inspection_record; — Shape inspection record. # 4.1.10. piping_system_functional_characterization UoF The piping_system_functional_characterization UoF describes the functional connectivity of a Piping_system and the functional connectivity among Plant_item objects in that system. This UoF provides the information that describes the functional links and properties of a flow stream in a Piping_system. It includes information about the segments in the line and the specifications for these segments, such as design criteria, service conditions, and line identifier. The following
application objects are used by the piping_system_functional_characterization UoF: | — Line_branch_connection; | |--| | — Line_branch_termination; | | — Line_piping_system_component_assignment; | | — Line_plant_item_branch_connection; | | — Line_plant_item_branch_connector; | | — Line_plant_item_connection; | | — Line_plant_item_connector; | | — Line_plant_item_termination; | | — Line_to_line_connection; | | — Line_to_line_termination; | | — Piping_specification; | | — Piping_system_line; | |---| | — Piping_system_line_segment; | | — Piping_system_line_segment_termination; | | — Piping_system_line_termination; | | — Segment_insulation; | | — Stream_design_case; | | — Stream_phase. | | 4.1.11. plant_characterization UoF | | The plant_characterization UoF describes identifiable collections of Plant_item objects that perform specific functions within a plant. The Plant_item objects are functionally dependent on one another for the performance of the system and are interrelated through physical connections. The collection of Plant_system objects as a whole enables the Plant to operate. | | The following application objects are used by the plant_characterization UoF: | | — Cableway_system; | | — Ducting_system; | | — Electrical_system; | | — External_classification; | | — Functional_plant; | | — Functional_plant_satisfaction; | | — Hvac_system; | | — Instrumentation_and_control_system; | | — Line_less_piping_system; | | — Location_in_plant; | | — Manufacturing_line; | | — Piping_system; | | — Planned_physical_plant; | — Plant; | ISO/CD 10303-227 — Plant_process_capability; | | |---|--| | — Plant_system; | | | — Plant_system_assembly; | | | — Structural_system; | | | — Sub_plant_relationship; | | | — Train; | | | — Unit. | | | 4.1.12. plant_csg_shape_representation UoF | | | The plant_csg_shape UoF specifies the representation of Plant_item shapes using CSG primitives. | | | The following application objects are used by the plant_csg_shape UoF: | | | — Block; | | | — Circular_ellipsoid; | | | — Cone; | | | — Csg_element; | | | — Cylinder; | | | — Eccentric_cone; | | | — Eccentric_cylinder; | | | — Eccentric_pyramid; | | | — Extrusion; | | | — Faceted_brep; | | | — Hemisphere; | | | — Pyramid; | | | — Reducing_torus; | | | — Solid_of_revolution; | | | — Sphere; | | | — Square_to_round; | | |--|---------------------| | — Torus; | | | — Trimmed_block; | | | — Trimmed_cone; | | | — Trimmed_cylinder; | | | — Trimmed_pyramid; | | | — Trimmed_sphere; | | | — Trimmed_torus. | | | 4.1.13. plant_item_characterization UoF | | | The plant_item_characterization UoF describes major elements that Plant objects and I system objects are comprised of. These are items within a Plant that occupy space and physical, measurable characteristics. This UoF specifies spatial and physical information Piping_system_component objects and Equipment, but only spatial characteristics of conformation of other Plant_system objects, such as hvac and instrumentation. | possess
on about | | This UoF describes the information and options associated with the specification of the or substances that a Plant_item is composed of. It also describes specification and catalinformation concerning piping components. | | | This UoF describes the spatial shape and position of volumes of space in a Plant. | | | NOTE 1 Physical plant_items are things that can be touched. | | | NOTE 2 As used in this part of ISO 10303, material does not refer to the production within plant systems. | cts that | | The following application objects are used by the plant_item_characterization UoF: | | | — Analysis_data_point; | | | — Bolt; | | | — Bolt_and_nut_component; | | | — Bolt_and_nut_set; | | | — Cable_support; | | | — Catalogue_definition; | | | — Catalogue_item; | | | — Catalogue_item_substitute;
© ISO 2001 — All rights reserved | 31 | # ISO/CD 10303-227 — Clamp; — Clamp_set; — Connected_collection; — Connection_component; — Connection_material; — Design_project; — Document; — Ducting_component; — Electrical_component; — Equipment; — Equipment_breaching; — Equipment_trim_piping; — Externally_defined_document; — Externally_defined_user_defined_attribute_value; — Functional_design_view; — Functional_plant_item_satisfaction; — Hexagon_head_bolt; — Hierarchically_organized_collection; - Hvac_ducting; — Installed_physical_design_view; — Instrument; — Instrumentation_and_control_component; — Insulation; — Material_specification_selection; — Material_specification_subset_reference; -- Nozzle; | — Nut; | 150/CD 10303-2 | |--------------------------------------|----------------| | — Offline_instrument; | | | — Physical_design_view; | | | — Piping_assembly; | | | — Piping_assembly_assignment; | | | — Piping_system_component; | | | — Plain_washer; | | | — Planned_physical_plant_item; | | | — Plant_item; | | | — Plant_item_collection; | | | — Plant_item_definition; | | | — Plant_item_design_view; | | | — Plant_item_instance; | | | — Plant_item_location; | | | — Plant_item_weight; | | | — Plant_volume; | | | — Process_ducting; | | | — Project_design_assignment; | | | — Relative_item_location; | | | — Required_material_description; | | | — Reserved_space; | | | — Route; | | | <pre>— Spare_plant_item_usage;</pre> | | | — Spring_washer; | | | — Structural_component; | | | — Stud_bolt; | | | — Supplied_equipment; | | @ ISO 2001 — All rights reserved 33 # ISO/CD 10303-227 — Supplier; — Support_component; — Support_constraints; — Support_usage; — Support_usage_connection; — System_space; — Toothed_lock_washer; — Trunnion; — User_defined_attribute_value; - Washer. shape UoF 4.1.14. The shape UoF specifies the external shapes of components, assemblies of components, and volumes of a Plant. The external shape of a component can be specified as an envelope of the space occupied by a component, as an outline of the component, or as a detailed definition of the shape of a component. The following application objects are used by the shape UoF: — Detail_shape; — Envelope_shape; — Hybrid_shape_representation; — Interfering_shape_element; — Outline_shape; — Plant_csg_shape_representation; — Plant_item_centreline; — Plant item interference; — Plant_item_interference_status; — Plant_item_shape; — Reference_geometry; | — Shape_interference_zone_usage; | ISO/CD 10303-227 | |---|------------------| | — Shape_parameter; | | | — Shape_representation; | | | — Shape_representation_element; | | | — Shape_representation_element_usage. | | | 4.1.15. site_characterization UoF | | | The site_characterization UoF describes the significant features of the Site who located. It includes information about the site location, infrastructure like road buildings, and other structures located on the Site, and the shape of the terrain or Site_feature is located. | ds and sewers, | | The following application objects are used by the site_characterization UoF: | | | — Breakline; | | | — Building; | | | — Facet_trigon; | | | — Faceted_surface_representation; | | | — Gis_position; | | | — Location_in_building; | | — Location_in_site; — Site; - Site_feature; — Sited_plant; — Survey_point. — Point_and_line_representation; — Site_shape_representation; # 4.2. Application objects This subclause specifies the application objects for the plant spatial configuration application protocol. Each application object is an atomic element that embodies a unique application concept and contains attributes specifying the data elements of the object. The application objects and their definitions are given below. Each application object attribute need not be present unless the attribute is specifically identified as required for an application object. ### 4.2.1. Analysis_data_point An Analysis_data_point is an identifiable point in space that has a relationship to some Plant_item (see **4.2.260**). Analysis_data_point serves as an anchor for contexts external to this part of ISO 10303 allowing information from these external contexts to reference data that is within the scope and format specified in this part of ISO 10303. | The data associated with an Analysis_data_point are the following: | |--| | — id; | | — name: | #### 4.2.1.1 id — location. The id specifies a unique identifier for the Analysis_data_point. #### 4.2.1.2 name The name specifies a textual label given to the Analysis_data_point. #### **4.2.1.3** location The location specifies the relative position of the Analysis_data_point within the Plant (see **4.2.258**). This location need not be within the envelope of the Plant_item (see **4.2.260**) with which this Analysis data point is associated. # 4.2.2. B_rep_element A B_rep_element is a type of Shape_representation_element (see **4.2.310**) that is composed of geometric and topological elements.
NOTE A B_rep_element need not represent a solid shape. # 4.2.3. Base_elbow_support A Base_elbow_support is a Piping_support (see **4.2.248**) that is attached to a corner of bent part. The main body of the Base_elbow_support is a pipe with a base plate that is attached at the foot of the main body of the support. The Base_elbow_support is placed vertically and supports the weight of the piping assembly at the base plate. NOTE Figure 3 depicts a non-adjustable and an adjustable Base_elbow_support. Figure 3 - Base_elbow_support The data associated with a Base elbow support are the following: - height; - adjustability. #### 4.2.3.1 height The height is the distance between the supporting face of the base plate of Base_elbow_support and the location_point. #### 4.2.3.2 adjustability The adjustability specifies a designation that classifies a Base_elbow_support based on variability of its height. The value of adjustability shall be one of the following: - adjustable; - non adjustable. # 4.2.4. Base_line _support A Base_line_support is a type of Piping_support (see **4.2.248**) that is attached to a horizontal pipe. The main body of the Base_line_support is usually a pipe, but shape steel or plate is occasionally used as the material of the support. The base plate is attached at the foot of the main body of the Base_line_support. The Base_line_support is placed vertically and supports the weight of the piping assembly to which it is attached at the base plate. NOTE Figure 4 depicts a typical Base_line_support. Figure 4 - Base_line_support The data associated with a Base_line_support are the following: - height; - spring. #### 4.2.4.1 height The height specifies the distance between the supporting face of the base plate of the Base_line_support and the location_point. #### **4.2.4.2** spring The spring specifies whether the Base_line_support contains a spring. The value of spring is one of the following: - with_spring; - without_spring. #### **4.2.5.** Blank A Blank is a type of Fitting (see **4.2.117**) that is placed between two Flange (see **4.2.119**) objects to block the flow of material between the pipelines on either side of the Blank. Each Blank may be one of the following: a Paddle_blank (see **4.2.230**) or a Spectacle_blind (see **4.2.325**). The data associated with a Blank are the following: - outside diameter; - thickness. ### 4.2.5.1 outside_diameter The outside_diameter specifies the external diameter of the Blank. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### **4.2.5.2** thickness The thickness specifies the distance between the two faces of the Blank. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.6. Blind_flange A Blind_flange is a type of Flange (see **4.2.119**) that is used to block material flow at a flanged connection. NOTE Figure 5 depicts a typical Blind_flange. Figure 5 - Blind_flange ### 4.2.7. Block A Block is a type of Csg_element (see **4.2.84**) that is a 3D right rectangular solid. NOTE The size and shape of a Block is described by three real values representing the dimensions of the Block. #### 4.2.8. Bolt A Bolt is a type of Bolt_and_nut_component (see **4.2.9**) that is used to fasten two or more Plant_items (see **4.2.260**) together. The Bolt is a rod with a hexagonal, square or round head at one end and a screw thread on the other, or with screw threads on both ends. The data associated with a Bolt are the following: — bolt type. The bolt type specifies a classification of the Bolt based on its shape characteristics. EXAMPLE Examples of bolt_type designations include hexagon_head, and stud. ### 4.2.9. **Bolt_and_nut_component** A Bolt_and_nut_component is a type of Connection_component (see **4.2.71**) that is a constituent element of a Bolt_and_nut_set (see **4.2.10**). Each Bolt_and_nut_component may be one of the following: a Bolt (see **4.2.8**), a Nut (see **4.2.223**), or a Washer (see **4.2.369**). The data associated with a Bolt_and_nut_component are the following: - nominal_size; - quantity. #### 4.2.9.1 nominal_size The nominal_size specifies a standard size designation of the Bolt_and_nut_component. It may be specified as a single value or as a range of values. NOTE 1 The nominal size need not represent an actual dimension. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### **4.2.9.2** quantity The quantity specifies the number of Bolt_and_nut_components used in a Bolt_and_nut_set (see **4.2.10**). #### 4.2.10. Bolt and nut set A Bolt_and_nut_set is a Connection_material (see **4.2.74**) that consists of Bolt_and_nut_components (see **4.2.9**) and the Bolt_and_nut_set shall contain at least one Bolt_and_nut_component such as a Bolt(see **4.2.8**), a Nut (see **4.2.223**), or a Washer(see **4.2.369**). The Bolt_and_nut_set is used to connect Piping components (see **4.2.240**). The data associated with a Bolt_and_nut_set are the following: - set_id; - quantity_used. ### 4.2.10.1 set_id The set_id specifies a unique identifier for the Bolt_and_nut_set. The set_id is required for each Bolt_and_nut_set. #### 4.2.10.2 quantity_used The quantity_used specifies the number of Bolt_and_nut_sets used at a Plant_item_connection (see **4.2.263**). #### 4.2.11. Boss A Boss is an Olet (see **4.2.225**) that is welded onto a pipe perpendicular to the straight run of the pipe. The Boss consists of a counter-bored shape with a Socket (see **4.2.319**) on the outside. NOTE Figure 6 depicts a typical Boss with two different welding types. Figure 6 - Boss The data associated with a Boss are the following: — depth. The depth specifies the distance from the outer face of the end_2_connector to the bottom of the socket. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### **4.2.12. Branch hole** A Branch_hole is a type of Piping_connector (see **4.2.242**) end type that is a hole cut in a pipe for a branch connection. NOTE A Branch_hole is not typically a design feature of the pipe, but rather is added after the fact to create a branch from the pipe. The hole may be used for stub-in connections, olets, or nipples can be welded or screwed to it. The data associated with a Branch_hole are the following: - diameter; - stub_in_depth. #### **4.2.12.1** diameter The diameter specifies the diameter value of the Branch_hole. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.12.2 stub_in_depth The stub_in_depth specifies the distance from the end of a stubbed-in Piping_component (see **4.2.240**) to the point where the centreline of the stubbed-in Piping_component intersects the outer surface of the other Piping_component. It may be specified as a single value or as a range of values. NOTE 1 See annex L for a discussion of attributes that may be assigned a single value or a range of values. NOTE 2 The attribute for stub_in_depth will only be used when the Piping_component (see **4.2.240**) participates in a connection. #### 4.2.13. Breakline A Breakline is a contiguous set of straight line segments that designate a path across a Site_shape_representation (see **4.2.315**). NOTE The path is a constraint on the mathematical interpolation of the surface of the terrain. ### **4.2.14. Building** A Building is a partially or totally enclosed structure located on a Site (see **4.2.313**) that contains Plant_system (see **4.2.276**) objects or provides supporting infrastructure within its boundaries. The z-axis of the local coordinate system of the Building shall be considered the elevation of the coordinate space. The data associated with a Building are the following: | — building_id; | | |----------------------------|----| | — location_and_orientation | 1; | | — name; | | | — shape. | | #### **4.2.14.1** building id The building_id specifies a unique number used to identify the building. Building_id is required for each Building. #### 4.2.14.2 location and orientation The location_and_orientation specifies the position of the Building relative to the site coordinate system and the orientation of the Building relative to a specified direction. EXAMPLE E5704.35', N5912.87' are coordinates. They can be used to locate a known point in the Building (e.g., centrelines of column row 1A). #### 4.2.14.3 name The name specifies a textual label given to the Building. ### 4.2.14.4 shape The shape specifies the outline or characteristic surface configuration or contour of the building. ### **4.2.15. Bushing** A Bushing is a type of Fitting (see **4.2.117**) with one external and one smaller internal end. NOTE Figure 7 depicts a typical threaded hexagon Bushing. It is typically used to connect a smaller Pipe (see4.2.236) to a larger Fitting or Nozzle. Figure 7 - Bushing The data associated with a Bushing are the following: - end_1_connector; - end_2_connector; - end_to_end_length. #### **4.2.15.1** end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) Male_end (see **4.2.215**). #### **4.2.15.2** end_2_connector The end 2 connector specifies the Piping connector (see 4.2.242) Female end (see 4.2.116). #### 4.2.15.3 end_to_end_length The end_to_end_length specifies the external length of the Bushing from the end-one face to the end-two face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### **4.2.16.** Buttweld A Buttweld is a type of Piping_connector (see **4.2.242**) that consists of the welding of two
Piping_component (see **4.2.240**) objects where they are aligned edge to edge. The data associated with a Buttweld are the following: --- root_gap. The root_gap specifies the distance between the end faces of two Piping_components (see **4.2.240**) that are butewlded. It may be specified as a single value or as a range of values. NOTE 1 See annex L for a discussion of attributes that may be assigned a single value or a range of values. NOTE 2 The attribute for root_gap will only be used when the Piping_component (see **4.2.240**) participates in a connection. #### 4.2.17. Cable A Cable is a group of one or more electrical conductors bound together to follow the same path through space, and insulated from each other. EXAMPLE Multi-conductor power cables, bus bars, twisted-pair ethernet cables, fiber-optic cables, telephone cables, hook-up wire. # 4.2.18. Cable_support A Cable_support is a type of Support_component (see **4.2.343**) that provides support to Electrical_component (see **4.2.99**) objects. The data associated with a Cable support are the following: — cable_support_type. The cable_support_type specifies a description of the category of Cable_support. ### 4.2.19. Cableway_component A Cableway_component is a type of Plant_item (see **4.2.260**) that is a part of a Cableway_system (see **4.2.24**). Each Cableway_component may be a Cableway_piece (see **4.2.22**), a Cableway_fitting (see **4.2.21**), or a Raceway_lane (see **4.2.290**). ### 4.2.20. Cableway_connector A Cableway_connector is a type of Plant_item_connector (see **4.2.265**) that establishes a link between two Cableway_component (see **4.2.19**) objects. The data associated with a Cableway_connector are the following: — type. The type specifies the kind of Cableway_connector. ### 4.2.21. Cableway_fitting A Cableway_fitting is a type of Cableway_component (see **4.2.19**) that joins or fits two other Cableway components (see **4.2.19**) together. ### 4.2.22. Cableway_piece A Cableway_piece is a type of Cableway_component (see **4.2.19**) that has one or more channels through which Cable (see **4.2.17**) objects may be run. Each Cableway_piece is either a Raceway (see **4.2.289**) or a Conduit (see **4.2.66**). # 4.2.23. Cableway_size_description A Cableway_size_description is used to explain or summarize the physical size of a Cableway_component (see **4.2.19**) or Cableway_connector (see **4.2.20**), based on a set of dimensional characteristics. Each Cableway_size_description is either a Raceway_size_description (see **4.2.291**) or a Conduit_size_description (see **4.2.67**). The data associated with a Cableway size description are the following: — fill_area. The fill_area specifies the cross-sectional area of the usable portion of the cavity within a Cableway_component (see **4.2.19**) that is available to be filled with Cable (see **4.2.17**) objects. # 4.2.24. Cableway_system A Cableway_system is a type of Plant_system (see **4.2.276**) that is a system of interconnected Cableway_component (see **4.2.19**) objects form a series of channels to hold Cable (see **4.2.17**) objects. ### 4.2.25. Cap A Cap is a type of Pipe_closure (see **4.2.237**) which closes the end of the pipe. NOTE Figure 8 depicts a typical welded round Cap. Figure 8 - Cap The data associated with a Cap are the following: -height. The height is the distance between the end and the top of the Cap. ### 4.2.26. Catalogue_connector A Catalogue_connector is the definition or the reference of a Connector_definition (see **4.2.75**). A Connector_definition may appear in a catalogue, or the properties of a Connector_definition may be drawn from a catalogue. NOTE A Catalogue_connector is analogous to a Catalogue_item (see **4.2.28**) in that both have standardized characteristics. # 4.2.27. Catalogue_definition A Catalogue_definition is the identification of a document that lists Catalogue_item (see **4.2.28**) objects. NOTE 1 Catalogue_definition may reference either an electronic or printed catalogue. NOTE 2 A Catalogue_definition may be defined by ISO 13584 [13]. ISO 13584 will be considered a normative reference when it has reached the DIS level. The data associated with a Catalogue_definition are the following: - catalogue id; - catalogue name; - catalogue_version. #### 4.2.27.1 catalogue_id The catalogue_id specifies a unique identifier given to a catalogue. Catalogue_id is required for each Catalogue definition. #### 4.2.27.2 catalogue_name The catalogue_name specifies a textual label given to the catalogue. #### 4.2.27.3 catalogue_version The catalogue_version specifies a particular release of a catalogue within a sequence of catalogue releases. # 4.2.28. Catalogue_item A Catalogue_item is an item whose characteristics are standardized and have been categorized in a library or catalogue. A Catalogue_item that is defined by a Plant_item_definition (see **4.2.267**) must be defined by a Plant_item_definition in which the Plant_item (see **4.2.260**) is defined as a Physical_design_view (see **4.2.235**). The data associated with a Catalogue_item are the following: - item_name; - item version; - model number. #### 4.2.28.1 item_name The item_name specifies a textual label that is used by the supplier to refer to the Catalogue item. #### **4.2.28.2** item version The item_version specifies a particular release of a Catalogue_item within a sequence of Catalogue_item releases. NOTE This attribute accommodates the possibility of revision pages to a supplier catalogue. #### 4.2.28.3 model_number The model_number is the identifier assigned by the supplier to one or more Catalogue_item objects. # 4.2.29. Catalogue_item_substitute A Catalogue_item_substitute is an alternate Catalogue_item (see **4.2.28**) that can be used instead of the specified Catalogue_item. # 4.2.30. Change A Change is the modification or requested modification of a Plant_item (see **4.2.260**). NOTE A Change may be a request to make a change or an approved change. The data associated with a Change are the following: business_unit; change_id; change_reason; change_summary; date; project_number; revision; title. #### **4.2.30.1** business unit The business_unit specifies the organization(s), company(s), or functional group(s) responsible for the Change. #### 4.2.30.2 change_id The change_id specifies a unique identifier for the Change. #### 4.2.30.3 change_reason The change_reason specifies the rationale for the Change. #### 4.2.30.4 change_summary The change_summary specifies a general description of the Change. #### 4.2.30.5 date The date specifies the calendar day-month-year and time that the Change was initiated on. NOTE A specific ordering of the day, month, and year within the date is not required. #### 4.2.30.6 project number The project_number specifies a designation assigned to identify projects within an organization. More than one project (and therefore more than one project_number) may be associated with a Change. EXAMPLE Identification of a project_number is used to allow tracking of items such as costs and job hours associated with a Change. NOTE A project_number may or may not be the same as the designation of a Design_project (see 4.2.87). #### 4.2.30.7 revision The revision specifies the particular amendment of the Change within a sequence of amendments. #### 4.2.30.8 title The title specifies a descriptive label for the Change. ### 4.2.31. Change_approval A Change_approval is the endorsement by an authority of the change in status of a specific Change (see **4.2.30**). The data associated with a Change_approval are the following: | <pre>— approval_date;</pre> | | |-----------------------------|--| | — approver; | | | — approver_role. | | #### 4.2.31.1 approval date The approval_date specifies the specific calendar day-month-year and time when the approval authority signed the Change as approved. NOTE A specific ordering of the day, month, and year within the date is not required. #### 4.2.31.2 approver The approver specifies the name of the individual who endorsed the Change. ### 4.2.31.3 approver_role The approver_role specifies the purpose or function of the approver that approves a change. ### 4.2.32. Change_item A Change_item is an item that may be modified, for which there is a request to modify, or is the result of a modification to a Change_item. Each Change_item is either: a Changed_line_- assignment (see 4.2.36), a Changed_line_branch_connection (see 4.2.37), a Changed_line_plant_item_branch_connection (see 4.2.38), a Changed_line_plant_item_- connection (see 4.2.39), a Changed_line_to_line_connection (see 4.2.40), a Changed_piping_- system_line (see 4.2.42), a Changed_piping_system_line_segment (see 4.2.43), a Changed_piping_system_line_segment_termination (see 4.2.44), a Changed_planned_physical_plant (see 4.2.45), a Changed_plant (see 4.2.46), a Changed_plant_item (see 4.2.47), a Changed_plant_item_collection (see 4.2.48), a Changed_plant_item_connection (see 4.2.49), a Changed_plant_item_connector (see 4.2.50), a Changed_plant_item_shape (see 4.2.52), a Changed_plant_process_capability (see 4.2.53), a Changed_plant_system (see 4.2.54), a Changed_reference_geometry (see 4.2.55), a Changed_required_material_description (see 4.2.56), a Changed_sited_plant (see 4.2.59), or a Changed_sub_plant_relationship (see 4.2.60). ### 4.2.32.1 creation_date — supersedence_status. The creation_date specifies the calendar day-month-year and time that the Change_item is created on. NOTE A specific ordering of the day, month, and year within the date is not required. #### 4.2.32.2 description The description specifies a textual explanation or summary of the item being changed. #### 4.2.32.3 from_or_to The from_or_to specifies whether the Change_item object is to be interpreted as the successor or predecessor in a change. The from_or_to shall have one of the following values: — from; — to. #### 4.2.32.3.1 from from specifies that the Change_item is the predecessor in a change relationship. ####
4.2.32.3.2 to to specifies that the Change_item is the successor in a change relationship. #### 4.2.32.4 item owner The item_owner specifies the name of the person or organization that owns the item being changed and is responsible for implementing or approving the change. #### 4.2.32.5 supersedence_status The status specifies the textual description of the existence condition of a Change_item. EXAMPLE Examples of Change_item status include Current, Superseded, and Deleted. ### 4.2.33. Change life_cycle_stage A Change_life_cycle_stage is a state in the life cycle of the change that indicates or classifies the status or disposition of the change. The data associated with a Change_life_cycle_stage are the following: — name. The name specifies a textual label given to the stage. EXAMPLE Examples of names include requested, pending, and implemented. ### 4.2.34. Change life cycle stage sequence A Change_life_cycle_stage_sequence is the mechanism that specifies the sequence of life-cycle stages. # 4.2.35. Change_life_cycle_stage_usage A Change_life_cycle_stage_usage is the assignment of a Change (see **4.2.30**) to a particular Change_life_cycle_stage (see **4.2.33**). The data associated with a Change_life_cycle_stage_usage are the following: - date of activation; - date_of_completion; - description. #### 4.2.35.1 date_of_activation The date_of_activation specifies the calendar day-month-year and time when the Change was assigned to the Change_life_cycle_stage. A specific ordering of the day, month, and year within the date is not required. #### 4.2.35.2 date_of_completion The date_of_completion specifies the calendar day-month-year and time when the Change was released from, or completed, the assigned life_cycle stage. #### **4.2.35.3** description The description specifies a textual explanation or summary of the assignment of the Change to a particular stage. # 4.2.36. Changed_line_assignment A Changed_line_assignment is a type of Change_item (see **4.2.32**) that identifies a Line_piping_system_component_assignment (see **4.2.200**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.37. Changed_line_branch_connection A Changed_line_branch_connection is a type of Change_item (see **4.2.32**) that identifies a Line_branch_connection (see **4.2.197**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.38. Changed_line_plant_item_branch_connection A Changed_line_plant_item_branch_connection is a type of Change_item (see **4.2.32**) that identifies a Line_plant_item_branch_connection (see **4.2.201**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.39. Changed_line_plant_item_connection A Changed_line_plant_item_connection is a type of Change_item (see **4.2.32**) that identifies a Line_plant_item_connection (see **4.2.203**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.40. Changed_line_to_line_connection A Changed_line_to_line_connection is a type of Change_item (see **4.2.32**) that identifies a Line_to_line_connection (see **4.2.206**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.41. Changed_piping_specification A Changed_piping_specification is a type of Change_item (see **4.2.32**) that identifies a Piping_specification (see **4.2.245**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.42. Changed_piping_system_line A Changed_piping_system_line is a type of Change_item (see **4.2.32**) that identifies a Piping_system_line (see **4.2.251**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.43. Changed_piping_system_line_segment A Changed_piping_system_line_segment is a type of Change_item (see **4.2.32**) that identifies a Piping_system_line_segment (see **4.2.252**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.44. Changed_piping_system_line_segment_termination A Changed_piping_system_line_segment_termination is a type of Change_item (see **4.2.32**) that identifies a Piping_system_line_segment_termination (see **4.2.253**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.45. Changed_planned_physical_plant A Changed_planned_physical_plant is a type of Change_item (see **4.2.32**) that identifies a Planned_physical_plant (see **4.2.256**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.46. Changed_plant A Changed_plant is a type of Change_item (see **4.2.32**) that identifies a Plant (see **4.2.258**) that is being changed or is the result of a Change (see **4.2.30**). ### 4.2.47. Changed_plant_item A Changed_plant_item is a type of Change_item (see **4.2.32**) that identifies a Plant_item (see **4.2.260**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.48. Changed_plant_item_collection A Changed_plant_item_collection is a type of Change_item (see **4.2.32**) that identifies a Plant_item_collection (see **4.2.262**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.49. Changed_plant_item_connection A Changed_plant_item_connection is a type of Change_item (see **4.2.32**) that identifies a Plant_item_connection (see **4.2.263**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.50. Changed_plant_item_connector A Changed_plant_item_connector is a type of Change_item (see **4.2.32**) that identifies a Plant_item_connector (see **4.2.265**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.51. Changed_plant_item_location A Changed_plant_item_location is a type of Change_item (see **4.2.32**) that identifies a Plant_item_location (see **4.2.272**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.52. Changed_plant_item_shape A Changed_plant_item_shape is a type of Change_item (see **4.2.32**) that identifies a Plant_item_shape (see **4.2.273**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.53. Changed_plant_process_capability A Changed_plant_process_capability is a type of Change_item (see **4.2.32**) that identifies a Plant_process_capability (see **4.2.275**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.54. Changed_plant_system A Changed_plant_system is a type of Change_item (see **4.2.32**) that identifies a Plant_system (see **4.2.276**) that is being changed or is the result of a Change (see **4.2.30**). ### 4.2.55. Changed_reference_geometry A Changed_reference_geometry is a type of Change_item (see **4.2.32**) that identifies a Reference_geometry (see **4.2.295**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.56. Changed required material description A Changed_required_material_description is a type of Change_item (see **4.2.32**) that identifies a Required_material_description (see **4.2.299**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.57. Changed_site A Changed_site is a type of Change_item (see **4.2.32**) that identifies a Site (see **4.2.313**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.58. Changed_site_feature A Changed_site_feature is a type of Change_item (see **4.2.32**) that identifies a Site_feature (see **4.2.314**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.59. Changed_sited_plant A Changed_sited_plant is a type of Change_item (see **4.2.32**) that identifies a Sited_plant (see **4.2.316**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.60. Changed_sub_plant_relationship A Changed_sub_plant_relationship is a type of Change_item (see **4.2.32**) that identifies a Sub_plant_relationship (see **4.2.340**) that is being changed or is the result of a Change (see **4.2.30**). # 4.2.61. Circular_ellipsoid A Circular_ellipsoid is a type of Csg_element (see **4.2.84**) that has the following geometric characteristics: it is axial symmetric; cross sections taken in a plane normal to the axis result are circular; cross sections taken in plane containing the axis are elliptical; it is trimmed with a plane that is normal to an axis. NOTE The shape of a Circular_ellipsoid may be described as a hemisphere that has been compressed along the circular axis. # 4.2.62. Clamp A Clamp is a set of devices used to join, grip, support, or compress mechanical or structural parts with opposing, often adjustable sides or parts for use in suspending pipe or for fastening hose to an end of pipe or fitting. NOTE Figure 9 depicts a typical Pipe Clamp. Figure 9 - Pipe Clamp ### **4.2.63.** Clamped A Clamped is a type of Piping_connector (see **4.2.242**) that is a physical feature of a Plant_item (see **4.2.260**) at which a Pipe Clamp (see **4.2.62**) is attached. # **4.2.64.** Clamp_set A Clamp_set is the collection of fasteners and items to be fully used with a Clamp (see **4.2.62**). The data associated with a Clamp_set are the following: - set_id; - quantity. #### 4.2.64.1 set_id The set_id specifies a unique identifier for the Clamp_set. The set_id is required for each Clamp_set. #### 4.2.64.2 quantity The quantity is the number of items in the Clamp_set. ### 4.2.65. Compound_bend_pipe A Compound_bend_pipe is a type of Pipe (see **4.2.236**) that is comprised of one or more of the following items grouped together and treated as a single Piping_component (see **4.2.240**). - Straight_pipe (see 4.2.332) - Swept_bend_pipe (see 4.2.349) - Mitre_bend_pipe (see **4.2.219**) The Compound_bend_pipe shall include at least one Swept_bend_pipe or Mitre_bend_pipe. The relationship between the Compound_bend_pipe and its constituents shall be established using Connected_collection (see **4.2.70**). NOTE Figure 10 depicts a typical Compund_bend_pipe. Figure 10 - Compound_bend_pipe #### **4.2.66.** Conduit A Conduit is a type of Cableway_piece (see **4.2.22**) that is a tube with a round cross section that holds Cable (see **4.2.17**)
objects. EXAMPLE Liquid-tight conduit, flexible conduit, rigid steel conduit, intermediate steel conduit, electrical metallic tubing, power concrete encased duct bank use conduit, rigid heavy wall conduit, rigid extra-heavy wall conduit. # 4.2.67. Conduit_size_description A Conduit_size_description is a type of Cableway_size_description (see **4.2.23**) that is used to explain or summarize the physical size of a Conduit (see **4.2.66**) based on a set of dimensional characteristics. The data associated with a Conduit_size_description are the following: - outer_diameter; - inner_diameter; - thickness. ### 4.2.67.1 outer diameter The outer_diameter specifies the external diameter of the Conduit (see **4.2.66**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.67.2 inner_diameter The inner_diameter specifies the diameter of the opening of the Conduit (see **4.2.66**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### **4.2.67.3** thickness The thickness specifies the width of the wall of the Conduit (see **4.2.66**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## **4.2.68.** Cone A Cone is a type of Csg_element (see **4.2.84**) that is a 3D volume with parallel, coaxial, circular cross-sections of radii that varies uniformly from a circular base to an axis normal to and positioned at the centre point of the base. ## **4.2.69.** Conic A Conic is a type of Curve (see **4.2.85**) composed of points located at a uniform distance from a point, a pair of points, or a point and a line. EXAMPLE Kinds of Conics include circles, ellipses, parabolas, and hyperbolas. ## 4.2.70. Connected collection A Connected_collection is a type of Plant_item_collection (see **4.2.262**) where elements of the whole collection must be connected. NOTE These connections may be identified explicitly by Plant_item_connection (see 4.2.263) objects. EXAMPLE A set of Plant_item (see **4.2.260**) objects can be collected for the purpose of defining the items that comprise an assembly. Examples of this assembly include packaged unit and module in a plant. # 4.2.71. Connection_component A Connection_component is a Plant_item (see **4.2.260**) that is used for the purpose of connecting other Plant_items. # 4.2.72. Connection_definition A Connection_definition is a type of Plant_item_connection (see **4.2.263**) that specifies connection comprised of two or more connectors that is part of a Plant_item_definition (see **4.2.267**). NOTE A Connection_definition that is part of a Plant_item_definition (see **4.2.267**) implies that the Plant_item_definition is a Connected_collection (see **4.2.70**). # 4.2.73. Connection_inspection_record A Connection_inspection_record is a collection of information that captures the result of an evaluation of an observed value for a characteristic of a connection against an expected or prescribed value for that characteristic, as well as information to evaluate the acceptability of the observed value. | The data associated with a Connection_inspection_record are the following: | | | | | |---|--|--|--|--| | — inspected_property_name; | | | | | | — connection_type; | | | | | | <pre>— inspection _type;</pre> | | | | | | — weld_id; | | | | | | <pre>— connecting_portion_id;</pre> | | | | | | — inspected_property_tolerance; | | | | | | — inspected_property_measured_value. | | | | | | 4.2.73.1 inspected_property_name | | | | | | The inspected_property_name specifies the characteristic for which information is being recorded. The inspected_property_name may be one of the following: | | | | | | For welded connections: | | | | | | fit up; drift diameter tolerance; welding procedure; weld dimension; welding person; nde; heat treatment; hardness test; | | | | | | For flanged connections: | | | | | | — fit up; — gasket type; 58 © ISO 2001 — All rights reserved | | | | | | — gasket thickness; | ISO/CD 10303-227 | |--|---------------------| | — gasket compressed thickness; | | | — bolt and nut tightening torque. | | | | | | For threaded connections: | | | | | | — fit up; | | | — gasket type; | | | gasket thickness;gasket compressed thickness; | | | | | | — threaded tightening torque. | | | 4.2.73.2 connection_type | | | The connection_type specifies the kind of connection that is being inspected. connection_type may be one of the following: | The | | — buttweld; | | | — slip on; | | | — socket; | | | — stub in; | | | — threaded; | | | — flanged. | | | 4.2.73.3 inspection_type | | | The inspection_type specifies the kind of inspection that is being performed. may be one of the following: | The inspection_type | | — pt; | | | — pt;
— mt; | | | — ut; | | | rt· | | ## 4.2.73.4 weld_id — visual examination. The weld_id is an identification of the weld point at which the inspection is being made. ## 4.2.73.5 connecting_portion_id The connecting_portion_id specifies a descriptive identification of the area of the connection that is being inspected. EXAMPLE For a welded slip on flange connection, two connecting portions may be defined – the inner portion where the end of the pipe is welded to the inner surface of the fitting, and the outside portion where the end of the fitting is welded to the outside of the pipe. ## 4.2.73.6 inspected_property_tolerance The inspected_property_tolerance specifies the acceptable deviation for the measured result of the inspection. ### 4.2.73.7 inspected_property_measured_value The inspected_property_measured_value specifies the recorded result of the inspection. # 4.2.74. Connection_material The Connection_material specifies the substances or other Plant_item (see **4.2.260**) objects used at the connection of two Plant_item_connector (see **4.2.265**) objects. This may be one or more specifications and one or more Plant_item objects. EXAMPLE At a connection of two butt-weld connectors, there is a welding specification that applies to the connection. At a connection of two flanged connectors there are bolts and nuts that connect the Flanges (see **4.2.119**), as well as a specification for the use of these items. The data associated with a Connection material are the following: — material_name. The material_name specifies common nomenclature used to refer to the material. # 4.2.75. Connector_definition A Connector_definition is a type of Plant_item_connector (see **4.2.265**) that identifies the connector where a non-instantiated Plant_item (see **4.2.260**) can connect to one or more other Plant_item connector objects. # **4.2.76.** Coupling A Coupling is a type of Fitting (see **4.2.117**) that is used to make a linear connection between two pipes. NOTE Figure 11 depicts a typical socket-weld Coupling. Figure 11- Socket weld Coupling The data associated with a Coupling are the following: - end_1_connector; - end_2_connector; - end_to_end_length. ### **4.2.76.1** end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) designated as end one. ### 4.2.76.2 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) designated as end two. ### 4.2.76.3 end_to_end_length The end_to_end_length specifies the external distance between the end-one and end-two faces. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.77. Cross A Cross is a type of Fitting (see **4.2.117**) that is a branched outlet consisting of four perpendicular legs to provide straight through and 90 degree flow. NOTE Figure 12 depicts a typical butt-weld Cross. Figure 12 - Butt-weld Cross The data associated with a Cross are the following: - centre_to_end_1_length; - centre_to_end_2_length; - centre_to_end_3_length; - centre_to_end_4_length; - end_1_connector; - end 2 connector; - end_3_connector; - end 4 connector. ## 4.2.77.1 centre_to_end_1_length The centre_to_end_1_length specifies the distance from the intersection of the cross straight-run centreline and branch-run centreline to the end-one (straight-run) face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.77.2 centre to end 2 length The centre_to_end_2_length specifies the distance from the intersection of the cross straight-run centreline and branch-run centreline to the end-two (straight-run) face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.77.3 centre_to_end_3_length The centre_to_end_3_length specifies the distance from the intersection of the cross straight-run centreline and branch-run centreline to the end-three (branch-run) face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.77.4 centre_to_end_4_length The centre_to_end_4_length specifies the distance from the intersection of the cross straight-run centreline and branch-run centreline to the end-four (branch-run) face. It may be specified as a single value or as a range
of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### **4.2.77.5** end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) designated as end one. ### **4.2.77.6** end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) designated as end two. ### 4.2.77.7 end 3 connector The end_3_connector specifies the Piping_connector (see **4.2.242**) designated as end three. ### **4.2.77.8** end_4_connector The end_4_connector specifies the Piping_connector (see **4.2.242**) designated as end four. ## 4.2.78. Cross_section_flat_oval A Cross_section_flat_oval is a type of Hvac_cross_section (see **4.2.150**). NOTE Figure 13 depicts a typical Cross_section_flat_oval. Figure 13 - Cross_section_flat_oval The data associated with a Cross_section_flat_oval are the following: - height; - width. ### 4.2.78.1 height This attribute specifies the distance between the flats as shown in Figure 13. ### 4.2.78.2 width This attribute specifies the distance between the outside of the rounds as shown in Figure 13. # 4.2.79. Cross_section_non_standard The Cross_section_non_standard is a type of Hvac_cross_section (see **4.2.150**) which cannot be defined by a set of common parameters and therefore requires explicit geometry to define the shape of the cross section. The data associated with a Cross section non standard are the following: — cross_section_boundary. A cross_section_boundary is a curve made up of several component curves but joined together to act as a single curve. The component curves are usually bounded by other surface intersections. # 4.2.80. Cross_section_radiused_corner The Cross_section_radiused_corner is a type of Hvac_cross_section (see **4.2.150**) taken through a piece of rectangular duct whose corners are radiused. NOTE Figure 14 depicts a typical Cross_section_radiused_corner. Figure 14 - Cross_section_radiused_corner The data associated with a Cross_section_radiused_corner are the following: - height; - width; - corner radius. ## 4.2.80.1 height This attribute specifies the distance between the horizontal flats as shown in Figure 14. ### 4.2.80.2 width This attribute specifies the distance between the vertical flats as shown in Figure 14. ### 4.2.80.3 corner radius This attribute specifies the radius of the fillet between a vertical face and a horizontal face. # 4.2.81. Cross_section_rectangular The Cross_section_rectangular is a type of Hvac_cross_section (see **4.2.150**) applied to the cross section taken through a piece of rectangular duct in an hvac system. The data associated with a Cross_section_rectangular are the following: - height; - width. ### 4.2.81.1 height This attribute specifies the distance between the horizontal flats. ### 4.2.81.2 width This attribute specifies the distance between the vertical flats. ## 4.2.82. Cross section round The Cross_section_round is a type of Hvac_cross_section (see **4.2.150**) which is applied to the cross section taken through a piece of round duct in an hvac system. The data associated with a Cross_section_round are the following: — radius. This attribute specifies the distance from the centre of the cross section to a point on its circuference. # 4.2.83. Cross section triangular The Cross_section_triangular is a type of Hvac_cross_section (see **4.2.150**) applied to the cross section taken through a piece of triangular duct in an hvac system. The data associated with a Cross_section_triangular are the following: - vertex_1; - vertex_2; - vertex_3. ### 4.2.83.1 vertex 1 Vertex_1 is a cartesian point which locates on of the three verticies of the triangular cross section. Vertex_1 is required for each Cross_section_triangular. ### 4.2.83.2 vertex 2 Vertex_2 is a cartesian point which locates on of the three verticies of the triangular cross section. Vertex_2 is required for each Cross_section_triangular. ### 4.2.83.3 vertex_3 Vertex_3 is a cartesian point which locates on of the three verticies of the triangular cross section. Vertex_3 is required for each Cross_section_triangular. # 4.2.84. Csg_element A Csg_element is a type of Shape_representation_element (see **4.2.310**) that is a regular, 3D geometric shape that is combined with other regular shapes through boolean operations to create a complex, 3D, solid model. Each Csg_element is either: a Block (see **4.2.7**), a Circular_ellipsoid (see **4.2.61**), a Cone (see **4.2.68**), a Cylinder (see **4.2.86**), an Eccentric_cone (see **4.2.94**), an Eccentric_cylinder (see **4.2.95**), an Eccentric_pyramid (see **4.2.96**), an Extrusion (see **4.2.111**), a Faceted_brep (see **4.2.113**), a Hemisphere (see **4.2.139**), a Pyramid (see **4.2.288**), a Reducing_torus (see **4.2.294**), a Solid_of_revolution (see **4.2.321**), a Sphere (see **4.2.326**), a Square_to_round (see **4.2.329**), a Torus (see **4.2.355**), a Trimmed_block (see **4.2.357**), a Trimmed_cone (see **4.2.358**), a Trimmed_cylinder (see **4.2.359**), a Trimmed_pyramid (see **4.2.360**), a Trimmed_sphere (see **4.2.361**), a Trimmed_torus (see **4.2.362**). ### 4.2.85. Curve A Curve is a type of Wire_and_surface_element (see **4.2.372**) that is a one-dimensional manifold in a space of dimension two or three. A Curve may be a Conic (see **4.2.69**), a Free_form_curve (see **4.2.125**), a Line (see **4.2.196**), a Polygon (see **4.2.283**), or a Vector (see **4.2.368**). NOTE Informally, a Curve can be envisioned as the path of a point moving in its coordinate space. # **4.2.86.** Cylinder A Cylinder is a type of Csg_element (see **4.2.84**) that is a 3D cylindrical solid primitive with end surfaces that are planar and are perpendicular to the axis. The size and shape of a Cylinder is completely described by two real values that represent the radius and length of the cylinder. # 4.2.87. **Design_project** A Design_project is a task with a specifically defined purpose and scope that is used for the administration and management of plant designs. | The data associated with a Design_project are the following: | |--| | — description; | | — name; | | — owner. | ## **4.2.87.1** description The description specifies a textual explanation or summary of the Design_project. ## 4.2.87.2 name The name specifies a textual label given to the Design project. #### 4.2.87.3 owner The owner specifies the name of the organization that is responsible for the Design_project. # 4.2.88. Detail_shape A Detail_shape is a type of Shape_representation (see **4.2.309**)that is the actual or intended external shape of a Plant_item (see **4.2.260**). A Detail_shape does not include the description of voids or other internal details of the shape of the Plant_item. NOTE Contrast Detail_shape with Outline_shape (see **4.2.228**) and Envelope_shape (see **4.2.103**). A Detail_shape more closely approximates the actual shape of the Plant_item (see **4.2.260**) than either Envelope_shape or Outline_shape and is, therefore, likely to be more complex than either Envelope_shape or Outline shape. ### **4.2.89. Document** A Document is the identification of a logical collection of information about a particular subject. © ISO 2001 — All rights reserved — document_type; — internal_document_reference. ## **4.2.89.1** document_id The document_id specifies a unique identification for the Document. ## 4.2.89.2 version_id The version_id specifies a unique identification of a revision of a particular Document. ### 4.2.89.3 document_type The document_type specifies the kind of Document. EXAMPLE A document_type may be "coating specification", "material test report", "mill sheet", "positive material identification record", "specification", "record", "chart", etc. ### 4.2.89.4 internal document reference The internal_document_reference specifies a specific location within a Document where information is represented. # 4.2.90. **Ducting_component** A Ducting_component is a type of Plant_item (see **4.2.260**) that conveys gaseous matter or airborne, particulate matter. Each Ducting_component may be one of the following: an Equipment_breaching (see **4.2.105**), an Hvac_ducting (see **4.2.151**), or a Process_ducting (see **4.2.286**). EXAMPLE A Ducting_component that does not fall within one of the subtype categories may be cable trays, raceways, and other ducting used for routing and support of cables. # 4.2.91. **Ducting_system** A Ducting_system is a type of Plant_system (see **4.2.276**) that controls the temperature, humidity, cleanliness, and circulation of environmental or exhaust air as required in a Plant (see **4.2.258**). A Ducting system may be an Hyac system (see **4.2.176**). The data associated with a Ducting_system are the following: — type. The type specifies a designation that classifies a Ducting_system based on the kind of service that it provides. # **4.2.92. Dummy_leg** A Dummy_leg is a type of Piping_support (see **4.2.248**) that is attached to a corner of bent part. The main body of it is usually a pipe but shape steel or plate is occasionally used as the material of the part. The Dummy_leg is placed horizontally and supports the weight that acts perpendicularly to the axis of the main body. NOTE Figure 15 depicts a typical Dummy_leg. Figure 15 - Dummy_leg The data associated with a Dummy leg are the following: — length. The length specifies the distance between the end face of the Dummy leg and the location point. # 4.2.93. Eccentric_base_elbow_support An Eccentric_base_elbow_support is a type of Base_elbow_support (see **4.2.3**) positioned such that its vertical leg is shifted from the centreline of the pipe it supports. NOTE Figure 16 depicts a typical Eccentric_base_elbow_support. Figure 16 - Eccentric_base_elbow_support The data associated with an Eccentric base elbow support are the following: - offset; - root_orientation. #### 4.2.93.1 offset The offset is the perpendicular distance
between the location_point and the centreline of the main body of the Eccentric_base_elbow_support. ### 4.2.93.2root orientation The root_orientation is the unit vector which gives the direction of the centreline of the inclined portion of the Eccentric_base_elbow_support at the point where it supports the pipe. # 4.2.94. Eccentric_cone An Eccentric_cone is a type of Csg_element (see **4.2.84**) that consists of a Cone (see **4.2.68**) with an axis that is not normal to the base. # 4.2.95. Eccentric_cylinder An Eccentric_cylinder is a type of Csg_element (see **4.2.84**) that consists of a Cylinder (see **4.2.86**) with an axis that is not normal to the base. # 4.2.96. Eccentric_pyramid An Eccentric_pyramid is a type of Csg_element (see **4.2.84**) that consists of a Pyramid (see **4.2.288**) with an axis that is not normal to the base. # 4.2.97. Eccentric_reducer An Eccentric_reducer is a type of Reducer (see **4.2.292**) where the small end is off-centre from the large end. NOTE Figure 17 depicts a typical butt-weld Eccentric_reducer. The end_<number>_connectors correspond to the end_<number>_connector attributes defined in Reducer (see **4.2.292**). Figure 17 - Eccentric_reducer The data associated with an Eccentric reducer are the following: - centreline_offset; - flat_side_orientation. ### 4.2.97.1 centreline_offset The centreline_offset specifies the perpendicular distance between the centreline of the large end of the Reducer (see **4.2.292**) and the centreline of the smaller end of the Reducer. ### 4.2.97.2 flat_side_orientation The flat_side_orientation specifies the direction of the straight side of the Eccentric_reducer. NOTE 1 The direction of the straight side is typically specified as up or down. NOTE 2 The straight side of the Eccentric_reducer corresponds to the side where the ends of the Eccentric_reducer have a common tangent point parallel to the centreline axes of the Eccentric_reducer. NOTE 3 Eccentric swage is a synonym for Eccentric Reducer which is normally used for smaller sizes. ## **4.2.98.** Elbow An Elbow is a type of Fitting (see **4.2.117**) that is used to change the direction of piping. NOTE Figure 18 depicts a typical socket-weld Elbow. Figure 18 - Elbow The data associated with an Elbow are the following: - centre_to_end_1_length; - centre_to_end_2_length; - centreline_radius; - end_1_connector; | _ | end_2_connector; | |---|------------------| | | sweep_angle; | | | type. | ## 4.2.98.1 centre_to_end_1_length The centre_to_end_1_length specifies the distance from the centre of the Elbow (i.e., where the centrelines for the two ends intersect) to the end-one face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.98.2 centre_to_end_2_length The centre_to_end_2_length specifies the distance from the centre of the Elbow (i.e., where the centrelines for the two ends intersect) to the end-two face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.98.3 centreline radius The centreline_radius specifies the distance from the centreline of the Elbow to the intersection of the perpendicular projection of the centreline taken at the point where the Elbow centreline ends or where the inlet and outlet ends of the Elbow centreline become straight lines. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.98.4 end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) designated as end one. ### **4.2.98.5** end 2 connector The end_2_connector specifies the Piping_connector (see **4.2.242**) designated as end two. ### **4.2.98.6** sweep_angle The sweep_angle specifies the included angle formed between two lines that are parallel to the end-one and end-two faces of the Elbow, measured at their point of intersection (the centre of radius of the Elbow). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.98.7 type The type specifies a designation that classifies the Elbow. EXAMPLE Examples of elbow designations include long radius, short radius, reducing, and street. ## 4.2.99. Electrical_component An Electrical_component is a type of Plant_item (see **4.2.260**) that is an individually identifiable and functional part of an Electrical_system (see **4.2.101**). EXAMPLE Examples of Electrical_components include cable tray, wireway, conduit, ductbank, cables, switches, relays, motor control centres, and junction boxes. ## 4.2.100. Electrical_connector An Electrical_connector is a type of Plant_item_connector (see **4.2.265**) that is intended to establish an electrical connection (signal or power) between two Plant_item (see **4.2.260**) objects. The data associated with an Electrical_connector are the following: — type. The type specifies the designation that describes the functional behaviour of the Electrical_connector. # 4.2.101. Electrical_system An Electrical_system is a type of Plant_system (see **4.2.276**) that is a system of wiring, switches, relays, and other equipment associated with receiving and distributing electrical power. The data associated with an Electrical_system are the following: - system_voltage_designation; - type. ## 4.2.101.1 system_voltage_designation The system_voltage_designation is the rated voltage of the system. ### 4.2.101.2 type The type specifies a designation that classifies the Electrical_system based on the kind of service that it provides. # 4.2.102. Electricity_transference An Electricity_transference is a type of Plant_item_connection (see **4.2.263**) that identifies the purpose or role of the connection as being the transfer of electrical current or signal. # 4.2.103. Envelope_shape An Envelope_shape is a type of Shape_representation (see **4.2.309**) that is a 3D spatial volume that completely encloses or bounds a Plant_item (see **4.2.260**). An Envelope_shape is a very simple geometric shape, such as a box, that encloses the plant item. An Envelope_shape may, but need not, include clearance or access spaces associated with the plant item. NOTE Contrast Envelope_shape with Detail_shape (see 4.2.88) and Outline_shape (see 4.2.228). # **4.2.104. Equipment** An Equipment is a type of Plant_item (see **4.2.260**) that is treated as a single and self-contained unit that provides a function. Each Equipment may be an Inline_equipment (see **4.2.182**). The data associated with an Equipment are the following: | — characteristics; | |---------------------------------| | — equipment_type; | | <pre>— heat_tracing_type;</pre> | | — insulation_specification; | | <pre>— rated_temperature;</pre> | | — shock_qualification_status; | | — vibration_amplitude; | | — vibration_frequency. | ### 4.2.104.1 characteristics The characteristics specifies functional attributes of the Equipment. EXAMPLE Characteristics of a pump may be that it operates at 80% efficiency while pumping 1250 gallons per minute. ## 4.2.104.2 equipment_type The equipment_type specifies a classification of an Equipment based on its performance characteristics. EXAMPLE Examples of equipment_type classifications include compressor, engine, furnace, gear box, heat exchanger, pressure vessel, pump, silo, tank, and turbine. ### 4.2.104.3 heat_tracing_type The heat_tracing_type specifies the means utilized to impart a temperature increase to the Equipment by an external wrapping or coiling. EXAMPLE Examples of heat_tracing_types include, but are not limited to, electrical or steam. ### 4.2.104.4 insulation_specification The insulation_specification specifies the document that defines the insulation requirements for the Equipment. ### 4.2.104.5 rated_temperature The rated_temperature applies to the maximum temperature of the environment where the operating equipment will be installed. ## 4.2.104.6 shock_qualification_status The shock_qualification_status for hvac applications falls into an "A" or "B" category. Under category "A" an hvac component can withstand the full limits of shock and still operate. Under the "B" category the hvac component will not be operational after full shock but the component will remain intact. ## 4.2.104.7 vibration_amplitude The vibration_amplitude is the magnitude, or amount, of displacement, velocity, or acceleration, measured from the "at rest" value. The amplitude of a vibration signal can be expressed in terms of "peak" level, "Peak-to-peak" level, or RMS level. It is somewhat of a de facto standard that Displacement is peak-to-peak, Velocity is peak, and Acceleration is RMS. ### 4.2.104.8 vibration_frequency Vibration_frequency refers to the pitch of a sound generated by vibration within an hvac system. Usually measured in cycles per second (cps). # 4.2.105. Equipment_breaching An Equipment_breaching is a type of Ducting_component (see **4.2.90**) consisting of a type of ductwork connected to a piece of Equipment (see **4.2.104**) for the purpose of exhausting gases. # 4.2.106. Equipment_trim_piping An Equipment_trim_piping is piping connected to a piece of Equipment (see **4.2.104**) that performs a function integral to the Equipment. NOTE The piping is normally designed and possibly provided or installed by the Equipment manufacturer. Piping of this nature is normally of nominal size two inches and below. # 4.2.107. Expander_flange An Expander_flange is a type of Flange (see **4.2.119**) that provides a transition from a smaller to a larger diameter Pipe (see **4.2.236**) at a flanged connection. NOTE Figure 19 depicts a typical Expander_flange. Figure 19 - Expander_flange # 4.2.108. External classification An External_classification is a
designation and description that classifies a Plant_item (see **4.2.260**), Plant (see **4.2.258**), Plant_system (see **4.2.276**), or Plant_item_connector (see **4.2.265**) based on predefined tables or sources defined externally to this part. The designation is a reference to the predefined table or source. The data associated with an External_classification are the following: - description; - name; - source. ### **4.2.108.1** description The description specifies a textual explanation or summary of the External classification. ### 4.2.108.2 name The name specifies a textual label given to the External_classification. ## 4.2.108.3 source The source specifies a designation that identifies a table or document that contains a list of candidate classifications that the name and description are drawn from. # 4.2.109. Externally_defined_document An externally_defined_document is a Document (see **4.2.89**) that is referenced from a source outside the context of an exchange. The data associated with an Externally_defined_document are the following: - source_id; - © ISO 2001 All rights reserved — source_description. ## 4.2.109.1 source id The source_id specifies a unique identification of the external origin of the document. EXAMPLE A source_id may be "ANSI", "ISO", "ISO 13584", "DIN", "JIS", "PFI", "Joe's notebook" or another external source. ### 4.2.109.2 source_description The source_description is text that characterizes the external_source. ## 4.2.110. Externally defined user defined attribute value An Externally_defined_user_defined_attribute_value is a type of User_defined_attribute_value (see **4.2.366**). The data associated with an Externally defined user defined attribute value are the following: - source; The source specifies a textual identification of the reference resource in which the User_defined_attribute_value is described. # **4.2.111.** Extrusion An Extrusion is a type of Csg_element (see **4.2.84**) that is a closed, 2D profile swept through a linear distance in space. ## 4.2.112. Facet_trigon A Facet_trigon is a planar, polygonal surface with three sides. NOTE In 3D computer models, curved surfaces are sometimes represented by a collection of Facets that approximate the curved surface. # **4.2.113. Faceted_brep** A Facet_brep is a type of Csg_element (see **4.2.84**). ## 4.2.114. Faceted surface representation A Faceted_surface_representation is a type of Site_shape_representation (see **4.2.315**) that consists of a collection of Facet_trigon (see **4.2.112**) objects that represent the topography of a Site (see **4.2.313**). # 4.2.115. Family_definition A Family_definition is a Plant_item_definition (see **4.2.267**) that characterizes a set of Piping_component (see **4.2.240**) objects based on common physical characteristics. Physical characteristics may be specified as a specific value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. EXAMPLE A Piping_specification (see **4.2.245**) describes a Family_definition, such as a class of elbows made of stainless steel that are long radius elbows between six inches and twenty four inches in diameter. The data associated with a Family_definition are the following: — family_classification_description. The family_classification_description specifies a textual explanation of the principle characteristics that vary within the family. # **4.2.116.** Female_end A Female_end is a type of Piping_connector (see **4.2.242**) end type that forms a recessed opening at the connector to support the insertion of a compatible male connector. NOTE Figure 20 depicts a typical Female_end. Figure 20 - Female_end The data associated with a Female_end are the following: - depth; - hub inside diameter; - hub length; - hub_outside_diameter. - © ISO 2001 All rights reserved ### 4.2.116.1 depth The depth specifies the distance from the face of the Piping_connector (see **4.2.242**) to the depth of relief. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.116.2 hub inside diameter The hub_inside_diameter specifies the diameter of the opening at the hub. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.116.3 hub_length The hub_length specifies the distance from the face of the Plant_item_connector (see **4.2.265**) to the point where the hub size transitions to the body size of the Plant_item (see **4.2.260**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.116.4 hub outside diameter The hub_outside_diameter specifies the external diameter of the hub. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### **4.2.117.** Ferrule A Ferrule is a metal cylinder placed over a hose end to affix the fitting to the hose. NOTE Figure 21 depicts a typical Ferrule. Figure 21 - Ferrule The data associated with a Ferrule are the following: - end 1 connector; - end_2_connector; - length. ### 4.2.117.1 end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) designated as end one. ### **4.2.117.2** end **2** connector The end_2_connector specifies the Piping_connector (see **4.2.242**) designated as end two. ### 4.2.117.3 length The length is the distance between the end_1_connector and the end_2_connector. # **4.2.118.** Fitting A Fitting is a type of Piping_component (see **4.2.240**) used to join or terminate sections of Pipe (see **4.2.236**) or provide changes of direction or branching in a Piping_system (see **4.2.249**). Each Fitting may be one of the following: a Blank (see **4.2.5**), a Bushing (see **4.2.15**), a Coupling (see **4.2.76**), a Cross (see **4.2.77**), an Elbow (see **4.2.98**), a Flange (see **4.2.119**), an Insert (see **4.2.184**), a Lap_joint_stub_end (see **4.2.194**), a Lateral (see **4.2.195**), an Olet (see **4.2.225**), an Orifice_plate (see **4.2.227**), a Pipe_closure (see **4.2.237**), a Reducer (see **4.2.292**), a Spacer (see **4.2.322**), a Tee (see **4.2.351**), a Union (see **4.2.364**), or a Y type lateral (see **4.2.373**). # **4.2.119.** Flange A Flange is a type of Fitting (see **4.2.117**) that is an annular collar that permits a bolted connection to a similar collar. Each Flange contains two end connectors, one of which shall be a Piping_connector (see **4.2.242**) of type Flanged_end. Each Flange may be one of the following: a Blind_flange (see **4.2.6**), an Expander_flange (see **4.2.107**), an Orifice_flange (see **4.2.226**), or a Reducing_flange (see **4.2.293**). Each Flange may be one of the following: a Lap_joint_flange (see **4.2.193**), a Slip_on_flange (see **4.2.317**), a Socket_weld_flange (see **4.2.320**), a Threaded_flange (see **4.2.353**), or a Weld_neck_flange (see **4.2.370**). The data associated with a Flange are the following: - end 1 connector; - end_2_connector; - hole_straddle_centreline_orientation; - hub through length; - hub_weld_point_diameter. ### **4.2.119.1** end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) at the flange face. ### **4.2.119.2** end_2_connector The end 2 connector specifies the Piping connector (see **4.2.242**) at the hub face. ### 4.2.119.3 hole_straddle_centreline_orientation The hole_straddle_centreline_orientation is the orientation of the hole straddle centreline of the Flange in plant coordinates. The hole straddle centreline is the line on the flange surface connected between the centre of the Flange and the middle point of two neighboring bolt holes. NOTE Figure 22 depicts hole_straddle_centreline_orientation. Figure 22 - Hole_straddle_centreline_orientation NOTE The receiving system may transform the plant coordinates into a local coordinate system if necessary. ## 4.2.119.4 hub_through_length The hub_through_length specifies the distance between the flange face and the hub face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.119.5 hub weld point diameter The hub_weld_point_diameter specifies the outside diameter of the hub at the point of connection between the flange and the pipe. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. # **4.2.120.** Flanged A Flanged is a type of Piping_connector (see **4.2.242**) end engagement type consisting of a circular disk of material with holes around the circumference and a facing style. NOTE The holes are used to bolt together two connected flanges. The facing is the mating surface that in conjunction with a gasket forms a tight connection by the pressure of the two connected flanged connectors. A flanged connection can be disassembled. # **4.2.121.** Flanged_end A Flanged_end is a type of Piping_connector (see **4.2.242**) end type that is a circular disk of material that supports the insertion of bolts to mate with a compatible Flanged_end. NOTE Figure 23 depicts a typical Flanged_end. Figure 23 - Flanged_end The data associated with a Flanged_end are the following: - face_finish; - face_type; - flange inside diameter; - flange_outside_diameter; - flange_thickness; - raised_face_diameter; - raised_face_height; - ring_bottom_radius; - ring_diameter; - ring_width. ## ISO/CD 10303-227 4.2.121.1 face_finish The face_finish specifies a description of the Flange (see **4.2.119**) face surface roughness and groove pattern. ## 4.2.121.2 face_type The face_type specifies
a classification of the mating surface of a Flange (see **4.2.119**) based on its shape characteristics. EXAMPLE Examples of face_type designations include raised_face, flat_face, ring_type_joint, male_face_of_male_and_female, female_face_of_male_and_female, male_face_of_tongue_and_groove, and female_face_of_tongue_and_groove. NOTE Figures 24 to 28 depict these face types. Figure 24 - Raised face flange Figure 25 – Flat face flange Figure 26 - Ring type joint flange Figure 27 - Male and female flange Figure 28 - Tongue and groove flange ## 4.2.121.3 flange_inside_diameter The flange_inside_diameter specifies the interior diameter of the Flange (see **4.2.119**) at the working point. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.121.4 flange_outside_diameter The flange_outside_diameter specifies the external diameter of the Flange (see **4.2.119**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.121.5 flange_thickness The flange_thickness specifies the distance between the inside and outside Flange (see **4.2.119**) disk surfaces, measured at the disk perimeter. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.121.6 raised_face_diameter The raised_face_diameter specifies the diameter measured across the elevated portion of the mating surface of a Flange (see **4.2.119**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.121.7 raised face height The raised_face_height specifies the perpendicular distance measured from the elevated portion of the Flange (see **4.2.119**) mating surface to the lower Flange surface. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.121.8 ring bottom radius The ring_bottom_radius specifies the radial measure of the bottom corners of a ring in raised face. The ring_bottom_radius may not be specified for a particular Flanged_end, but when specified must be accompanied by raised_face_diameter, raised_face_height, ring_diameter, and ring_width. ## 4.2.121.9 ring_diameter The ring_diameter specifies the diameter of a ring in the raised-face portion of a Flanged_end. The ring_diameter may not be specified for a particular Flanged_end, but when specified must be accompanied by raised_face_diameter, raised_face_height, ring_bottom_radius, and ring_width. ### 4.2.121.10 ring_width The ring_width specifies the width of the groove formed by a ring in the raised-face portion of a Flanged_end. The ring_width may not be specified for a particular Flanged_end, but when specified must be accompanied by raised_face_diameter, raised_face_height, ring_bottom_radius, and ring_diameter. ## **4.2.122.** Flared end A Flared_end is an end_type where the inside_diameter and outside_diameter at the end is increased with no change in thickness forming a kind of lip. The data associated with a Flared_end are the following: — diameter; — thickness. #### 4.2.122.1 diameter The diameter is the inside diameter at the end of the flare (largest point). #### 4.2.121.2 thickness The thickness is the Fitting (see **4.2.118**) thickness at the point the diameter is measured. ## 4.2.123. Flexible_connection A Flexible_connection is a type of Plant_item_connection (see **4.2.263**) in which two Plant_item_connector (see **4.2.265**) objects are in physical contact, though there is no implication concerning the freedom of motion of the connected Plant_item (see **4.2.260**) objects. EXAMPLE The pump driver may be connected to an electrical cable at its terminal using a Flexible_connection; the cable need not rotate when the pump is rotated, but contact must be preserved. # 4.2.124. Fluid transference A Fluid_transference is a type of Plant_item_connection (see **4.2.263**) that identifies the purpose or role of the connection as being the transfer of gas, vapour, liquid or solid material. ## 4.2.125. Free form curve A Free_form_curve is a type of Curve (see **4.2.85**). It is a one-dimensional, contiguous set of points. ## 4.2.126. Functional connection definition satisfaction A Functional_connection_definition_satisfaction is the assignment of an actual Connection_definition (see **4.2.72**) to a functional Connection_definition for the purpose of satisfying the functional requirements with a physical object. The data associated with a Functional connection definition satisfaction are the following: — functional connection definition; — physical_connection_definition. ### 4.2.126.1 functional_connection_definition The functional_connection_definition is a reference to the connection_id of the Connection_definition (see **4.2.72**) object that describes the functional view of the connection. # 4.2.126.2 physical_connection_definition The physical_connection_definition is a reference to the connection_id of the Connection_definition object that describes the physical view of the connection that satisfies the function specified by the functional view of the definition of the connection. # 4.2.127. Functional_connection_occurrence_satisfaction A Functional_connection_occurrence_satisfaction is the assignment of an actual Plant_item_connection_occurrence (see **4.2.264**) to a functional Plant_item_connection_occurrence for the purpose of satisfying the functional requirements with a physical object. The data associated with a Functional connection occurrence satisfaction are the following: — physical_connection. The physical_connection is a reference to the connection_id of the occurrence of the connection that describes the physical view of the connection that satisfies the function specified by the functional view of the occurrence of the connection. # **4.2.128.** Functional_connector A Functional_connector is a type of Plant_item_connector_occurrence (see **4.2.266**) that represents the functional or logical aspect of the Plant_item_connector_occurrence. Each Functional_connector is either: a Line_plant_item_branch_connector (see **4.2.202**) or a Line_plant_item_connector (see **4.2.204**). # 4.2.129. Functional_connector_definition_satisfaction A Functional_connector_definition_satisfaction is the assignment of an actual Connector_definition (see **4.2.75**) to a functional Connector_definition for the purpose of satisfying the functional requirements with a physical object. ## 4.2.130. Functional connector_occurrence satisfaction A Functional_connector_occurrence_satisfaction is the assignment of an actual Physical_-connector (see **4.2.234**) to a Functional_connector (see **4.2.128**) for the purpose of satisfying the functional requirements with a physical object. # 4.2.131. Functional_design_view A Functional_design_view is a type of Plant_item_design_view (see **4.2.268**) that indicates that data associated with the Plant_item (see **4.2.260**) are the logical characteristics of a Plant_item rather than the physical. The data associated with a Functional design view are the following: — tag_number. The tag_number specifies an optional identifier assigned to the Plant_item (see **4.2.260**) for purposes of functional identification and eventual physical tracking. # 4.2.132. Functional_plant A Functional_plant is a Plant (see **4.2.258**) that is the identification of a view of the Plant that aggregates the functional characteristics of the Plant. # 4.2.133. Functional_plant_item_satisfaction A Functional_plant_item_satisfaction is the assignment of a Physical_design_view (see **4.2.235**) to a Functional_design_view (see **4.2.131**) for the purpose of satisfying the functional requirements with a physical object. # 4.2.134. Functional plant satisfaction A Functional_plant_satisfaction is the assignment of an actual Planned_physical_plant (see **4.2.256**) to a Functional_plant (see **4.2.132**) for the purpose of satisfying the functional requirements with a physical object. The data associated with a Functional_plant _satisfaction are the following: - functional_plant; - planned_physical. ### 4.2.134.1 functional_plant The functional_connection_definition is a reference to the plant_id of the Functional_plant object that describes the functional view of the connection. ### 4.2.134.2 planned_physical The planned_physical is a reference to the plant_id of the Planned_physical_plant object that describes the physical view of the plant that satisfies the function specified by the functional view of the plant. ## 4.2.135. Gasket A Gasket is a type of Piping_component (see **4.2.240**) that seals a connection between two connectors. NOTE Gaskets are primarily used with Flanged (see 4.2.120) Plant_item_connector (see 4.2.265). The data associated with a Gasket are the following: - compressed_thickness; - uncompressed_thickness. ### 4.2.135.1 compressed thickness The compressed_thickness specifies the distance between the two parallel surfaces of the Gasket in its compressed state in a connection. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.135.2 uncompressed_thickness The uncompressed_thickness specifies the as-procured distance between the two parallel surfaces of the Gasket. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. # **4.2.136. Gis_position** A Gis_position is the positioning and orientation information necessary for
transforming coordinate values between a local coordinate space and the global coordinate system of earth. Transformation procedures depend upon the geographic information system (GIS) coordinate system. Each Gis_position object designates the global position and orientation of a Site_shape_representation (see **4.2.315**). The data associated with a Gis_position are the following: |
height; | | |-------------|--| | | | — scale; - system; — x axis delta x; — x_axis_delta_y; — x coordinate; — y_coordinate; — zone. ### 4.2.136.1 height The height specifies the distance above sea level or reference level in the GIS coordinate system. #### 4.2.136.2 scale The scale specifies a transformation factor applied to the conversion of point coordinates between a local coordinate system and a GIS coordinate system. The precise application of the transformation will depend on the GIS system. ### 4.2.136.3 system The system specifies the identifier of the GIS system being used. EXAMPLE Gauss-Krueger, Universal Transverse Mercator (UTM), and State Plane are examples of GIS systems used for global positioning. ### 4.2.136.4 x axis delta x The x_axis_delta_x specifies the abscissa value of the end point of a vector indicating the positive x-axis of GIS coordinate space in the local coordinate system. ### 4.2.136.5 x_axis_delta_y The x_axis_delta_y specifies the ordinate value of the end point of a vector indicating the orientation or the positive x-axis of GIS coordinate space in the local coordinate system. EXAMPLE The GIS coordinate system XY00 has an origin at the intersection of the equator and the Greenwich meridian. The x-axis of the coordinate system runs East (positive) and West (negative). The y-axis runs North (positive) and South (negative). The positive z-axis is up (above sea level or the reference level in the GIS coordinate system). The negative z-axis is down (below sea level or the reference level in the GIS coordinate system). An x_axis_delta_x of 1.0 and x_axis_delta_y of 1.0 indicates x axis of the GIS coordinate space makes a +45° angle with respect to the x axis of the local coordinate; if the local coordinate space were superimposed on the GIS coordinate space, the positive x-axis of the local coordinate system would point in a South-East direction (-45°). ### 4.2.136.6 x coordinate The x_coordinate specifies the distance from the y-axis of the coordinate space defined by the GIS system and zone. ### **4.2.136.7 y_coordinate** The y_coordinate specifies the distance from the x-axis of the coordinate space defined by the GIS system and zone. The zone specifies a subdivision of the earth's surface based on the GIS system. EXAMPLE The Gauss-Krueger GIS system subdivides the earth into 120 zones that are 3° in longitudinal width. Each zone is identified as 3° , 6° , 9° , etc., from the Greenwich meridian. # **4.2.137. Grooved_end** A Grooved_end is a type of Piping_connector (see **4.2.242**) end type that contains a circumferential groove cut or is rolled on a pipe surface for a grooved joint connection. NOTE Figure 29 depicts a typical Grooved_end. Figure 29 - Grooved_end The data associated with a Grooved_end are the following: - depth; - distance from end; - width. ## 4.2.137.1 depth The depth specifies the distance between the outer surface of the Pipe (see **4.2.236**) and the bottom of the groove. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.137.2 distance_from_end The distance_from_end specifies the distance between the end of the Pipe (see **4.2.236**) and the inner edge of the groove. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.137.3 width The width specifies the distance between the inner edge and the outer edge of the groove. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.138. Gusset A Gusset is a type of Reinforcing_component (see **4.2.296**) that is a tensile member placed diagonally between run pipe and branch pipe, and prevents the branch from breaking or deforming. NOTE Figure 30 depicts a Gusset. Figure 30 - Gusset The data associated with a Gusset are the following: -height. The height is the distance between the location point and the most outer point of the Gusset welded to the branch pipe. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. # **4.2.139. Hemisphere** A Hemisphere is a type of Csg_element (see **4.2.84**) that is formed by cutting a Sphere (see **4.2.326**) with a plane that passes through the centre point of the Sphere and removing one section. # 4.2.140. Hexagon_head_bolt A Hexagon_head_bolt is a type of a Bolt (see **4.2.8**) that has a hexagonal head at one end and a screw thread on the other. The data associated with a Hexagon_head_bolt are the following: - length. The length specifies the distance from the inner face of the hexagonal head to the tip of the screw thread. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. # 4.2.141. Hierarchically_organized_collection A Hierarchically_organized_collection is a type of Plant_item_collection (see **4.2.262**) that indicates whether a Plant_item (see **4.2.260**) that is a member of an aggregate Plant_item is related to other Plant_items that are also members of the aggregate Plant_item. The members of the aggregate may, but need not, be connected. # 4.2.142. Hvac_access_opening An Hvac_access_opening is a hole in an Hvac_component (see **4.2.145**) providing maintenance access. The data associated with an Hvac_access_opening are the following: ``` access_opening_id;access_type;shape. ``` ### 4.2.142.1 access opening id This attribute differentiates one Hvac_access_opening on an Hvac_component (see **4.2.145**) from another. ### 4.2.142.2 access_type This attribute specifies the type of opening in the Hvac_component (see **4.2.145**). ## 4.2.142.3 shape The shape is the volumetric representation of the Hvac_access_opening or the projection of the Hvac_access_opening on the Hvac_component (see **4.2.145**). ## **4.2.143. Hvac_bend** An Hvac_bend is an Hvac_fitting (see **4.2.157**) which follows a curved path. The cross section of the fitting is normal to the path. The data associated with an Hvac_bend are the following: ``` bend_path; end_1_connector; end_2_connector; length. ``` ## 4.2.143.1 bend_path The bend_path is the centreline trace of the Hvac_bend. ### 4.2.143.2 end_1_connector The end_1_connector is the primary connecting end of an Hvac_bend. ## 4.2.143.3 end_2_connector The end_2_connector is the secondary connecting end of an Hvac_bend. #### 4.2.143.4 length The length refers to the extent of the Hvac_bend from beginning to end. ## 4.2.144. Hvac_branch_connection An Hvac_branch_connection is a connection between the logical termination of one Hvac_section_segment (see **4.2.169**) and a point on another Hvac_section segment other than a termination. The data associated with an Hvac_branch_connection are the following: — branch_sequence_id. This attribute specifies an alphanumeric identifier that indicates the order that branches extend from the main Hvac_section_segment (see **4.2.169**). NOTE All branch_sequence_ids are unique with respect to the branches of a given Hvac_section_segment (see **4.2.169**). # 4.2.145. Hvac_component An Hvac_component is a type of Plant_item (see **4.2.260**) that is an individually identifiable item or combination of items that is part of an Hvac_system (see **4.2.176**). Each Hvac_component may be one of the following: an Hvac_equipment (see **4.2.156**), an Hvac_fitting (see **4.2.157**), an Hvac_ducting (see **4.2.151**), and Hvac_instrument (see **4.2.160**), and an Hvac_flow_control_device (see **4.2.158**). EXAMPLE The description attribute inherited from Plant_item (see **4.2.260**) is used to describe the Hvac component. Examples to descriptions include "air handling unit", "chiller", or "space heater". An Hvac_component applies to any element that is a subset member of an Hvac_system (see **4.2.176**). The data associated with an Hvac component are the following: - design_flow_rate; - design_flow_condition; - design_pressure; - design temperature; - pressure_loss_coefficient; - pressure_drop; - velocity. ## 4.2.145.1 design_flow_rate This attribute specifies the required flow volume over a specific unit of time. #### 4.2.145.2 design_flow_condition This attribute defines the flow volume under standard operating procedures. ### 4.2.145.3 design_pressure This attribute specifies the maximum allowable pressure at the Hvac_connector (see **4.2.147**). It may be specified as a single value or as a range of values. NOTE 1 This value is normally created as part of doing 3D analysis of the Hvac_system (see **4.2.176**) design. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.145.4 design_temperature This attribute specifies the maximum allowable temperature at the Hvac_connector (see **4.2.147**). It may be specified as a single value or as a range of values. NOTE 1 This value is normally created as part of doing 3D analysis of the Hvac_system (see **4.2.176**) design. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.145.5 pressure_loss_coefficient This attribute specifies a mathmatical expression applied to the Hvac_system (see **4.2.176**) pressure to indicate loss to the system air
flow due to internal system factors such as friction and turbulence. ### 4.2.145.6 pressure_drop This attribute specifies the loss of air flow due to leaks, friction, or distance. ### 4.2.145.7 velocity This attribute specifies the distance which air moves per unit of time, usually in feet per minute or feet per second. # 4.2.146. Hvac_component_thickness An Hvac_component_thickness is the skin thickness of the Hvac_component (see **4.2.145**). The data associated with an Hvac component thickness are the following: - sheet metal thickness; - thickness_type. ### 4.2.146.1 sheet_metal_thickness This attribute specifies the dimension between two of the sheet metals opposite surfaces. The thickness specifies the perpendicular distance between the two faces of the sheet metal. It may be specified as a single value or as a range of values. NOTE See Annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.146.2 thickness_type This atribute specifies the specific unit measurement type applied to quantify the thickness for a given element of an Hvac_system (see **4.2.176**). ## 4.2.147. Hvac_connector An Hvac_connector is a type of Plant_item_connector (see **4.2.265**) that is intended to establish a material flow connection between two Plant_item (see **4.2.260**) objects. within an Hvac_system (see **4.2.176**). The data associated with an Hvac connector are the following: | — name; | |--| | — hvac_connector_specification; | | — hvac_joint_inspection_specification; | | — connector_flow_direction; | | — hvac_joint_test_specification; | | — hvac_joint_engagement_length; | | <pre>— hvac_joint_joining_type;</pre> | | <pre>— hvac_joint_sealant_type;</pre> | | <pre>— hvac_joint_joint_type;</pre> | | — hvac_joint_tightness. | #### 4.2.147.1 name This attribute specifies a textual label given to the Hvac_connector. ### 4.2.147.2 hvac_connector_specification This attribute specifies the specification associated with the Hvac_connector. There may be more than one hvac_connector_specification for an Hvac_connector. EXAMPLE Examples of the identified connector_specification include insulation specification, end preparation specification, and thread specification. #### 4.2.147.3 hvac joint inspection specification This attribute specifies the criteria for the review and approval processes of Hvac_component (see **4.2.145**) connections. #### 4.2.147.4 connector_flow_direction This attribute specifies the direction process air moves past the Plant_item (see **4.2.260**). The value of connector_flow_direction is one of the following: - both - inlet - outlet #### 4.2.147.5 hvac_joint_test_specification This attribute specifies the test and evaluation procedures which apply to Hvac_component (see **4.2.145**) connections. #### 4.2.147.6 hvac_joint_engagement_length This attribute specifies the length of the interface between joined Hvac_components (see **4.2.145**). ### 4.2.147.7 hvac joint joining type This attribute specifies the method of mechanically joining the Hvac_components (see **4.2.145**). The value of the hvac_joint_joining_type may be one of the following: - weld - solder - lapped_rivet - sheet_metal_screw ### 4.2.147.8 hvac_joint_sealant_type This attribute specifies the method used to seal the joint in order to satisfy the leak condition specified by the hvac_joint_tightness. The value of the hvac_joint_sealant_type may be one of the following: - hvac gasket - hvac thermal fit band - hvac duct sealant - hvac_tape #### 4.2.147.8.1 hvac gasket The hvac gasket is a seal or packing used between components to prevent the escape of air. #### 4.2.147.8.2 hvac thermal fit band The hvac_thermal_fit_band is usually associated with spiral duct work where one piece is slid into another. The thermal_fit_band or coupler is placed around the joint and when heated seals the ducts together. #### 4.2.147.8.3 hvac_duct_sealant The hvac_duct_sealant is an adhesive agent used to secure hvac components to prevent seepage of moisture or air. ## 4.2.147.8.4 hvac_tape The hvac_tape provides a seal to the hvac_joint_joint_type #### 4.2.147.9 hvac_joint_joint_type This attribute specifies the method used to join Plant_item_connection_occurrence (see **4.2.264**) objects. ### 4.2.147.10 hvac_joint_tightness This attribute specifies the ability of the joint to resist leakage. The value of hvac_joint_tightness is one of the following: ``` air_tightwater_tightnon_water_tightdrip_tight ``` #### 4.2.147.10.1 air tight An air_tight joint shall not allow any gas to leak through the joint. #### 4.2.147.10.2 water tight A water_tight joint shall not allow any water to leak through the joint. ### 4.2.147.10.3 non_water_tight Non_water_tight refers to an hvac joint description which is not required to prevent or retard the passage of any liquid or air at the designated hvac joint. ### 4.2.147.10.4 drip_tight A drip_tight joint shall not allow any fluid, including air to leak from the joint. # 4.2.148. Hvac_connector_service_characteristic An Hvac_connector_service_characteristic defines the operating conditions for which the Hvac_connector (see **4.2.147**) is designed. The data associated with an Hvac_connector_service_characteristic are the following: design_pressure;design_temperature. ### 4.2.148.1 design_pressure This attribute specifies the maximum allowable pressure at the Hvac_connector (see **4.2.147**). It may be specified as a single value or as a range of values. NOTE 1 This value is normally created as part of doing 3D analysis of the Hvac_system (see **4.2.176**) design. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.148.2 design temperature This attribute specifies the maximum allowable temperature at the Hvac_connector (see **4.2.147**). It may be specified as a single value or as a range of values. NOTE 1 This value is normally created as part of doing 3D analysis of the Hvac_system (see **4.2.176**) design. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. # 4.2.149. Hvac_coupling An Hvac_coupling is a type of Hvac_fitting (see **4.2.157**) which makes a flexible or rigid connection between two Hvac_component (see **4.2.145**) objects. The data associated with an Hvac_coupling are the following: ``` — end_1_connector; — end_2_connector; — length; — offset_x; — offset_y. ``` #### 4.2.149.1 end 1 connector This attribute is the primary connecting end of an Hvac_coupling. #### 4.2.149.2 end 2 connector This attribute is the secondary connecting end of an Hvac coupling. #### 4.2.149.3 length This attribute is the distance of the Hvac_coupling from beginning to end. #### 4.2.149.4 offset x This attribute specifies the distance between end_connector_1 and end_connector_2 as measured along the x axis of the Hvac cross section (see **4.2.150**). ### 4.2.149.5 offset_y This attribute specifies the distance between end_connector_1 and end_connector_2 as measured along the y axis of the Hvac_cross_section (see **4.2.150**). ### 4.2.150. Hvac cross section An Hvac_cross_section is a planar shape created by a plane cutting through an Hvac_component (see **4.2.145**) at a right angle to the components centreline axis. This reveals the external outline of the component. Each Hvac_cross_section may be one of the following: a Cross_section_flat_oval (see **4.2.78**), a Cross_section_non_standard (see **4.2.79**), a Cross_section_radiused_corner (see **4.2.80**), a Cross_section_rectangular (see **4.2.81**), a Cross_section_round (see **4.2.82**), and a Cross_section_triangular (see **4.2.83**). The data associated with an Hvac_cross_section are the following: — equivalent_length . The term equivalent_length with respect to the Hvac_cross_section means both width and height dimensions are the same. ## 4.2.151. Hvac_ducting An Hvac_ducting is a type of Ducting_component (see **4.2.90**) and a type of Hvac_component (see **4.2.145**) that is an individually identifiable piece or section of ducting that is part of an Hvac_system (see **4.2.176**). The hvac_specification_id is a designation that differentiates one Hvac specification (see **4.2.175**) from another. The data associated with an Hvac_ducting are the following: - duct_path; - duct_seam; - length; - end 1 connector; - end_2_connector. #### 4.2.151.1 duct_path This attribute is the centreline trace of the Hvac_ducting. #### 4.2.151.2 duct_seam This attribute refers to the line formed where two surfaces of the duct overlap each other. #### 4.2.151.3 length This attribute is the distance of the Hvac_ducting from beginning to end. #### 4.2.151.4 end 1 connector The end_1_connector is the primary connecting end of a piece of duct. ### 4.2.151.5 end_2_connector The end_2_connector is the secondary connecting end of a piece of duct. # 4.2.152. Hvac_elbow_90deg_reducing The Hvac_elbow_90deg_reducing is a type of Hvac_fitting (see **4.2.157**) in which the flow of the air changes direction through a 90 degree turn and the cross section transitions from one size diameter to another. In terms of geometric construction, there are two closed curves with an interior trace curve from centre to centre upon which the surface is created. NOTE 1 In terms of geometric construction, there are two closed curves with an interior trace curve from centre to centre upon which the surface is created. NOTE 2 Figure 31 depicts an Hvac_elbow_90deg_reducing. Figure 31 - Hvac elbow 90deg reducing The data associated with an Hvac_elbow_90deg_reducing are the following: - angle; - throat_radius; - heel_radius; - heel_radius_centre_offset; - end_1_connector; - end_2_connector. #### 4.2.152.1 angle This attribute specifies the sweep angle in degrees for the component elbow. #### 4.2.152.2 throat_radius This attribute specifies the inside radius for the component elbow. ### 4.2.152.3 heel_radius This attribute specifies the
outside radius for the component elbow. ### 4.2.152.4 heel_radius_centre_offset This attribute specifies the vertical distance from the throat centre to the splitter centre. ### 4.2.152.5 end_1_connector The end_1_connector is the primary connecting end of a component elbow. ### 4.2.152.6 end_2_connector The end_2_connector is the secondary connecting end of a component elbow. ## 4.2.153. Hvac elbow centred The Hvac_elbow_centred is is a type of Hvac_fitting (see **4.2.157**) in which the flow of the air changes direction. In terms of geometric construction, there are two closed curves with an interior trace curve from centre to centre upon which the surface is created. NOTE Figure 32 depicts an Hvac_elbow_centred. Figure 32 - Hvac_elbow_centred The data associated with an Hvac_elbow_centred are the following: ### 4.2.153.1 angle This attribute specifies the sweep angle in degrees for the component elbow. #### 4.2.153.2 width This attribute specifies the distance between the sides of the elbow component. Not indicated on the sketch. #### 4.2.153.3 height This attribute specifies the vertical distance from the throat centre to the heel_radius. #### 4.2.153.4 throat_radius This attribute specifies the inside radius for the component elbow. ### **4.2.153.5** heel_radius This attribute specifies the outside radius for the component elbow. ### 4.2.153.6 end_1_connector The end_1_connector is the primary connecting end of a component elbow. ### 4.2.153.7 end_2_connector The end_2_connector is the secondary connecting end of a component elbow. ## 4.2.154. Hvac_elbow_mitre An Hvac_elbow_mitre is a type of Hvac_fitting (see **4.2.157**) developed through the use of two or more straight sections of vent that are beveled and joined on a line bisecting the angle of junction. NOTE Figure 33 depicts an Hvac_elbow_mitre. Figure 33 - Hvac_elbow_mitre The data associated with an Hvac_elbow_mitre are the following: - angle_first_section; - angle_last_section; - number_of_sections; - sweep_angle; - throat_radius; - heel_radius; - end_1_connector; - end_2_connector. ### 4.2.154.1 angle_first_section This attribute specifies the sweep angle in degrees for the first section of the mitred elbow development. ### 4.2.154.2 angle_last_section This attribute specifies the sweep angle in degrees for the last section of the mitred elbow development. ### 4.2.154.3 number_of_sections This attribute specifies how many sections are necessary to develop the mitred elbow. #### 4.2.154.4 sweep_angle This attribute specifies the overall angle of the elbow. #### **4.2.154.5** throat radius This attribute specifies the inside radius for the component elbow. #### 4.2.154.6 heel_radius This attribute specifies the outside radius for the component elbow. #### 4.2.154.7 end 1 connector The end_1_connector is the primary connecting end of a component elbow. #### 4.2.154.8 end 2 connector The end_2_connector is the secondary connecting end of a component elbow. # 4.2.155. Hvac_end_fitting An Hvac_end_fitting is a type of Hvac_fitting (see **4.2.157**) which only connects to one other Hvac_component (see **4.2.145**). The data associated with an Hvac end fitting are the following: - end_1_connector; - opening_type. #### 4.2.155.1 end 1 connector The end_1_connector is the primary connecting end of an Hvac_end_fitting. #### **4.2.155.2** opening_type This attribute specifies the type of opening at the end of the fitting which does not have a connector. # 4.2.156. Hvac_equipment An Hvac_equipment is a type of Hvac_component (see **4.2.145**) used to develop a functional Hvac_system (see **4.2.176**). # **4.2.157. Hvac_fitting** An Hvac_fitting is an individual component of an hvac duct system. Each Hvac_fitting may be one of the following: Hvac_coupling (see **4.2.149**), an Hvac_elbow_90deg_reducing (see **4.2.152**), an Hvac_elbow_centred (see **4.2.153**), an Hvac_elbow_mitre (see **4.2.154**), an Hvac_end_fitting (see **4.2.155**), an Hvac_fitting (see **4.2.157**), an Hvac_gasket (see **4.2.159**), an Hvac_offset_centred (see **4.2.161**), an Hvac_offset_ogee_centred (see **4.2.162**), an Hvac_takeoff (see **4.2.178**), an Hvac_transition (see **4.2.179**), and an Hvac_transition_slanted (see **4.2.180**). ## 4.2.158. Hvac flow control device An Hvac_flow_control_device is a type of Hvac_component (see **4.2.145**) of the Hvac_system (see **4.2.176**) that regulates the airflow based on the inline design conditions and settings. Note Such devices fall into four catagories and include sensors, controllers, controlled devices, and auxiliary devices. Auxiliary devices include relays, transducers, and switches. The data associated with an Hvac_flow_control_device are the following: ``` flow_control_device_id; control_device_type; end_1_connector; end_2_connector; control_point_units; control_point_nominal_value; control_point_min_value; control_point_max_value; control_point_set_point_value. ``` ### 4.2.158.1 flow_control_device_id The flow_control_device_id is the unique identifier for each of the inline control devices. These include sensors, controllers, controlled devices, and auxiliary devices. It is the unique id for the Hvac flow control devices. ### 4.2.158.2 control_device_type This attribute specifies the type of device which controls flow. #### 4.2.158.3 end 1 connector The end_1_connector is the primary connecting end of an Hvac_flow_control_device. ### 4.2.158.4 end_2_connector The end 2 connector is the secondary connecting end of an Hvac flow control device. ### 4.2.158.5 control_point_units this attribute specifies the units as pounds per square inch. ### 4.2.158.6 control_point_nominal_value This attribute specifies the average controlled airflow in pounds per square inch (psi). ### 4.2.158.7 control point min value This attribute specifies the minimun controlled airflow in pounds per square inch (psi). ### 4.2.158.8 control_point_max_value This attribute specifies the maximun controlled airflow in pounds per square inch (psi). #### 4.2.158.9 control_point_set_point_value This attribute specifies the variable value assigned as the primary parameter upon which the Hvac_system (see **4.2.176**) maintains temperature control. # **4.2.159. Hvac_gasket** An Hvac_gasket is a type of Hvac_component (see **4.2.145**) used between components to prevent the escape of air. Example An example of an Hvac_gasket is is a seal or packing. ### 4.2.160. Hvac instrument An Hvac_instrument is a type of Hvac_fitting (see **4.2.157**) which monitors, measures, indicates, and records the system status. Note The purpose of the Hvac_instrument is to provide information to the plant operator for analyzing, troubleshooting, and improving the operation of the Hvac_system (see **4.2.176**). The data associated with an Hvac instrument are the following: | — instrument_id; | |--------------------------| | — units; | | — low_range; | | — high_range; | | — type; | | — parameter_measured; | | — low_alarm; | | — high_alarm; | | — nameplate_inscription; | | — divisions. | #### **4.2.160.1** instrument_id This attribute specifies the unique identifier for each Hvac instrument. #### 4.2.160.2 units This attribute specifies the units recorded by the Hvac_instrument. Note The units applied to Hvac_instruments will vary in accordance with the particular Hvac_system (see **4.2.176**) function that is monitored. ### 4.2.160.3 low_range This attribute specifies the low end setting for a particular Hvac_system (see **4.2.176**) function. 106 © ISO 2001 — All rights reserved Example Oil pressure gauge. #### 4.2.160.4 high_range This attribute specifies high end setting for an Hvac_system (see 4.2.176) function. ### 4.2.160.5 type This attribute specifies a specific kind of Hvac_instrument device used to monitor an Hvac_system (see **4.2.176**). ### 4.2.160.6 parameter_measure This attribute specifies a function that is monitored or measured. Example Voltage, current, pressure, velocity. ### 4.2.160.7 low alarm This attribute specifies a function of an Hvac_instrument device. ### 4.2.160.8 high_alarm This attribute specifies a function of an Hvac_instrument device. ### 4.2.160.9 nameplate_inscription This attribute specifies the text on the nameplate used to identify an Hvac_instrument (see **4.2.160**) and the function it is designed to carry out. #### 4.2.160.10 divisions This attribute specifies the gradations on the gauge. ## 4.2.161. Hvac_offset_centred An Hvac_offset_centred is a type of Hvac_connector (see **4.2.147**) fitting. The data associated with an Hvac_offset_centred are the following: | — angle; | |--------------------| | — offset; | | — length; | | — throat_radius; | | — heel_radius; | | — end_1_connector; | | — end 2 connector. | #### 4.2.161.1 angle This attribute specifies the number of degrees for the radial sections at both top and bottom. #### 4.2.161.2 offset This attribute specifies the perpendicular distance between the centres of two Hvac_components (see **4.2.145**) which are to be connected. ### 4.2.161.3 length This attribute specifies the horizontal distance between two Hvac_component (see **4.2.145**) objects from connection point one to connection point two. #### **4.2.161.4 throat radius** This attribute specifies the inside radius for the end sections of the Hvac_offset_centred fitting. #### **4.2.161.5** heel_radius This attribute specifies the outside radius for the end sections of the Hvac_offset_centred fitting. ### 4.2.161.6 end_1_connector The end_1_connector is the primary connecting end of an Hvac_offset_centred fitting. #### 4.2.161.7 end 2 connector The end_2_connector is the secondary connecting end of an Hvac_offset_centred fitting. # 4.2.162. Hvac_offset_ogee_centred An Hvac_offset_ogee_centred is a type of Hvac_fitting (see **4.2.157**) that appears to be an "s" shaped component. NOTE Figure 34 depicts an Hvac_offset_ogee_centred. Figure 34 - Hvac_offset_ogee_centred The data associated with an Hvac_offset_ogee_centred are the
following: | — angle; | |--------------------| | — offset; | | — length; | | — throat_radius; | | — heel_radius; | | — end_1_connector; | | — end 2 connector. | ### 4.2.162.1 angle This attribute specifies the number of degrees applied to the upper and lower heel and throat radius construction. #### 4.2.162.2 offset This attribute specifies the perpendicular distance between the centrelines of the upper and lower connecting ends of the Hvac_offset_ogee_centred component. #### 4.2.162.3 length This attribute specifies the horizontal distance between end_1_connector and end_2_connector of the Hvac_offset_ogee_centred fitting. #### **4.2.162.4 throat radius** This attribute specifies the interior radius of the radial transition of the Hvac offset ogee centred. It applies to the upper and lower transitions. #### 4.2.162.5 heel radius This attribute specifies the exterior radius of the radial transition of the Hvac_offset_ogee_centred. It applies to the upper and lower transition. #### 4.2.162.6 end 1 connector The end_1_connector is the primary connecting end of an Hvac_offset_ogee_centred. #### 4.2.162.7 end 2 connector The end 2 connector is the secondary connecting end of an Hvac offset ogee centred. # 4.2.163. Hvac_plant_item_branch_connection An Hvac_plant_item_branch_connection is a connection between an Hvac_plant_item_branch_connection and a point on an Hvac_section_segment (see **4.2.169**) other than an Hvac_section_segment_terminator (see **4.2.171**). Each Hvac_plant_item_branch_connection defines the branches of exactly one Hvac section_segment (see **4.2.169**). The data associated with an Hvac_plant_item_branch_connection are the following: — branch sequence id. The branch_sequence_id specifies an alphanumeric identifier that indicates the order that branches extend from the main Hvac section segment (see **4.2.169**). NOTE All branch_sequence_ids are unique with respect to the branches of a given Hvac_section_segment (see **4.2.169**). # 4.2.164. Hvac_plant_item_branch_connector An Hvac_plant_item_branch_connector is a type of Functional_connector (see **4.2.128**) which connects an Hvac_plant_item_branch_connector to a point on an Hvac_section_segment (see **4.2.169**) other than a termination. The Hvac_plant_item_branch_connector branches from the Hvac_section_segment. ## 4.2.165. Hvac_plant_item_connection An Hvac_plant_item_connection is a linkage between two or more Hvac_plant_item_connector (see **4.2.166**) objects. The joining conditions may be specified for the connection. # 4.2.166. Hvac_plant_item_connector An Hvac_plant_item_connector is a type of Functional_connector (see **4.2.128**) which is a feature of a Plant_item (see **4.2.260**) that is designed to connect to a connector on another hvac Plant_item. # 4.2.167. Hvac_plant_item_termination An Hvac_plant_item_termination is a type of Hvac_section_segment_termination (see **4.2.171**) that connects to an Hvac_plant_item_connection (see **4.2.165**). # 4.2.168. Hvac section branch termination An Hvac_section_branch_termination is a type of Hvac_section_segment_termination (see **4.2.171**) that connects to an Hvac_section_segment (see **4.2.169**) at a point other than a termination. # 4.2.169. Hvac_section_segment An Hvac_section_segment is an element of an Hvac_system_section (see **4.2.177**) which terminates at a functional Plant_item_connector (see **4.2.265**), a tap into an Hvac_system_section, or a point where the stream diverges or converges. The data associated with an Hvac_section_segment are the following: - hvac_segment_id; - pressure drop. #### **4.2.169.1** hvac segment id This attribute specifies a unique identifier for the Hvac section segment. ### 4.2.169.2 pressure_drop This attribute specifies the drop in pressure in the Hvac_section_segment. ## 4.2.170. Hvac section segment insulation An Hvac_section_segment_insulation is a piece of insulation which is applied uniformly to the Hvac_section_segment (see **4.2.169**). The data associated with an Hvac_section_segment_insulation are the following: - insulation thickness; - insulation_type; - insulation_description; - insulation_specification. #### 4.2.170.1 insulation thickness This attribute specifies the total thickness of the insulation measure from the surface of the Hvac_section_segment (see **4.2.169**) outward. ### 4.2.170.2 insulation_type This attribute specifies the type of material which keeps the hot side hot and the cold side cold. ### 4.2.170.3 insulation_description This attribute specifies a description of the insulation. #### 4.2.170.4 insulation specification This attribute specifies a document which describes the properties of the insulation. # 4.2.171. Hvac_section_segment_termination An Hvac_section_segment_termination is one of the logical end-points of an Hvac_section_segment (see **4.2.169**). Each Hvac_section_segment_termination may be one of the following: an Hvac_section_branch_termination (see **4.2.168**), an Hvac_section_termination (see **4.2.172**), an Hvac_section_to_section_termination (see **4.2.174**), and an Hvac_plant_item_termination (see **4.2.167**). The data associated with an Hvac_section_segment_termination are the following: - flow direction. The flow_direction is the direction of flow of the fluid with respect to the Hvac_section_segment (see **4.2.169**). ### 4.2.172. Hvac section termination An Hvac_section_termination is a type of Hvac_section_segment_termination (see **4.2.171**) that begins or ends an Hvac_section_segment (see **4.2.169**). The data associated with an Hvac_section_termination are the following: - location: - start_or_end. ### ISO/CD 10303-227 4.2.172.1 location This attribute specifies the relative distance in the X, Y, Z directions of the position of the end of the Hvac_section_segment (see **4.2.169**), from the plant origin. NOTE The location position may also be defined by where it connects to an upstream piece of Equipment (see **4.2.104**) or Hvac_section_segment. #### 4.2.172.2 start or end This attribute specifies an enumerated value that defines the side of the Hvac_ducting (see **4.2.151**) on which the section termination lies. NOTE A value of 'start' indicates the section termination is on the upstream end, and a value of 'end' indicates that the section termination is on the downstream end. ## 4.2.173. Hvac_section_to_section_connection An Hvac_section_to_section_connection is a connnection between two Hvac_section_segments (see 4.2.169). The data associated with an Hvac_section_to_section_connection are the following: — section_to_section_connection_id. The section_to_section_connection_id is a unique identifier of the connection between two Hvac_section_segments (see **4.2.169**). ## 4.2.174. Hvac section to section termination An Hvac_section_to_section_termination is the terminating segment of an Hvac_section_segment (see **4.2.169**) which is the terminating segment of an Hvac_section_segment (see **4.2.169**). # 4.2.175. Hvac_specification The data associated with an Hvac_specification are the following: | — hvac_specification_id; | |--------------------------| | — name; | | — owner; | | — service_description. | #### 4.2.175.1 hvac_specification_id This attribute specifies a designation that differentiates one Hvac_specification from another. #### 4.2.175.2 name This attribute specifies a textual label given to the Hvac specification. #### 4.2.175.3 owner This attribute specifies the owner as a point of contact for the specification. #### 4.2.175.4 service_description This attribute specifies the service that this specification applies to. ## **4.2.176.** Hvac system An Hvac_system is a type of Ducting_system (see **4.2.91**) that controls the temperature, humidity, cleanliness, and circulation of environmental air as required in a Building (see **4.2.14**). ## 4.2.177. Hvac system section An Hvac_system_section consists of one or many Hvac_section_segments (see 4.2.169). The data associated with an Hvac_system_section are the following: — hvac section id; The hyac section id specifies a unique identifier for the Hyac section segment (see 4.2.169). ## 4.2.178. Hvac takeoff An Hvac_takeoff is a type of Hvac_fitting (see **4.2.157**) which has three end connectors. The data associated with an Hvac_takeoff are the following: - end 1 connector; - end_2_connector; - end_3_connector; - centre to end 1 length; - centre_to_end_2_length; - centre_to_end_3_length; - takeoff_angle. ### 4.2.178.1 end_1_connector The end 1 connector is the connector to the inlet of the Hvac takeoff. #### 4.2.178.2 end_2_connector The end_2_connector is the connector to the outlet of the Hvac_takeoff. #### 4.2.178.3 end 3 connector The end_3_connector is the connector to the branch of the Hvac_takeoff. #### 4.2.178.4 centre_to_end_1_length This attribute specifies the distance from the intersection of the branch and the run to end_1_connector which is the inlet of the Hvac-fitting (see **4.2.157**). #### 4.2.178.5 centre_to_end_2_length This attribute specifies the distance from the intersection of the branch and the run to end_2_connector which is the outlet of the Hvac_fitting (see **4.2.157**). ## 4.2.178.6 centre_to_end_3_length This attribute specifies the distance from the intersection of the branch and the run to end_3_connector which is the branch of the Hvac_fitting (see **4.2.157**). #### 4.2.178.7 takeoff_angle This attribute specifies the angle between the through run of the Hvac_fitting (see **4.2.157**) and the line segment connecting the intersection of the branch and the run to the termination to the end_3_connector. # 4.2.179. Hvac_transition An Hvac_transition is a type of Hvac_fitting (see 4.2.157) between two Hvac_section_segments (see **4.2.169**) having different cross sections, shapes, size, or having an offset. NOTE Figure 35 depicts an Hvac_transition from Rectangular to Round Figure 35 - Transition - Rectangular to Round The data associated with an Hvac_transition are the following:
— offset_x; — offset_y; — length; — end_1_connector; — end_2_connector. ### 4.2.179.1 offset_x This attribute specifies the distance from the inlet to the outlet as shown by XOFFSET in Figure 35 ### 4.2.179.2 offset_y This attribute specifies the distance from the inlet to the outlet as shown by YOFFSET in Figure 35 ### 4.2.179.3 length This attribute specifies the length of the transition as shown by L in Figure 35. ### 4.2.179.4 end_1_connector The end_1_connector is the primary connecting end of a transition. ### 4.2.179.5 end_2_connector The end_2_connector is the secondary connecting end of a transition. # 4.2.180. Hvac_transition_slanted An Hvac_transition_slanted is a type of Hvac_fitting (see **4.2.157**) which provides a change in size and a change in direction between two Plant_items (see **4.2.260**). NOTE Figure 36 depicts an Hvac_transition_slanted from Rectangle to Round Figure 36 - Transition - Rectangle to Round Slanted The data associated with an Hvac_transition_slanted are the following: - slant_angle; - length; - end_1_connector; - end_2_connector. ### 4.2.180.1 slant_angle This attribute specifies the slant angle of the transition as shown by A in Figure 36. #### 4.2.180.2 length This attribute specifies the length between end_1_connector and end_2_connector. #### **4.2.180.3** end_1_connector The end_1_connector is the primary connecting end of a slanted transition. #### 4.2.180.4 end 2 connector The end_2_connector is the secondary connecting end of a slanted transition. ## 4.2.181. Hybrid_shape_representation A Hybrid_shape_representation is a type of Shape_representation. (see **4.2.309**). ## 4.2.182. Inline_equipment An Inline_equipment is a type of Equipment (see **4.2.104**) and Piping_system_component (see **4.2.250**) that is inserted into the flow of a process stream to perform a function. ## 4.2.183. Inline_instrument An Inline_instrument is a type of Instrument (see **4.2.188**) and Piping_system_component (see **4.2.250**) that is inserted into the flow of a process stream to measure some characteristic of the stream. EXAMPLE Thermowells, pressure gauges, and flowmeters are examples of Inline_instruments. The data associated with an Inline_instrument are the following: — control_loop_id. A control_loop_id specifies a unique identfier for a control module that is implemented by an Inline_instrument. ### 4.2.184. Insert An Insert is a type of Fitting (see 4.2.118) with one external and one smaller internal end. NOTE Figure 37 depicts a typical Insert. Figure 37 - Insert The data associated with an Insert are the following: - end_1_connector; - end_2_connector; - end_to_end_length. #### 4.2.184.1 end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) designated as Male_end (see **4.2.215**). #### 4.2.184.2 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) designated as Female_end (see **4.2.116**). ### 4.2.184.3 end_to_end_length The end_to_end_length specifies the external length of the Insert from the end-one face to the end-two face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.185. Inside_and_thickness An Inside_and_thickness is a type of Piping_size_description (see **4.2.244**) that describes the size of a Piping_system_component (see **4.2.250**) or a Piping_connector (see **4.2.242**) using an actual (intended) inside diameter and wall thickness. The data associated with an Inside and thickness are the following: - inside diameter; - thickness. ### 4.2.185.1 inside_diameter The inside_diameter specifies the actual (intended, not nominal) inside diameter of the Piping_system_component (see **4.2.250**) or Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### **4.2.185.2** thickness The thickness specifies the minimum distance between the inside and outside piping wall surfaces required for the Piping_system_component (see **4.2.250**) or Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. # 4.2.186. Inspection_condition The Inspection_condition is a characteristic which shall be required to be attained for the inspection to be accomplished. The data associated with an Inspection condition are the following: - condition_name; - value. #### **4.2.186.1** condition name The condition name specifies the characteristic that is being defined. EXAMPLE "welding preheating temp" and "post heating temp" are inspection condition names. #### 4.2.186.2 value The value specifies the specific quantity or alphanumeric qualifier for the characteristic that affects the inspection. # 4.2.187. Installed_physical_design_view An Installed_physical_design_view is an indication that the Plant_item (see **4.2.260**) described by a Physical design view (see **4.2.235**) is physically installed within the Plant (see **4.2.258**). NOTE Within a usage of this part of ISO 10303, all Plant_items (see **4.2.260**) are considered as planned physical design views unless they are related to Installed_physical_design_view. This relationship indicates that the Plant_item is an actual item that currently exists or is installed in the Plant (see **4.2.258**). The data associated with an Installed_physical_design_view are the following: — serial number. The serial_number specifies a designation that uniquely identifies a particular physical Plant_item (see **4.2.260**) that is installed in a Plant (see **4.2.258**. NOTE The designation is typically assigned and affixed by the manufacturer of the Plant_item (see **4.2.260**). #### **4.2.188.** Instrument An Instrument is a type of Instrumentation_and_control_component (see **4.2.189**) that monitors one or more performance characteristics of a system. Each Instrument may be one of the following: an Inline_instrument (see **4.2.183**) or an Offline_instrument (see **4.2.224**). The data associated with an Instrument are the following: | <pre>— instrument_type;</pre> | |-------------------------------| | <pre>— sensor_type;</pre> | | <pre>— signal_type;</pre> | | — stream_interaction_type. | #### 4.2.188.1 instrument_type The instrument_type specifies a classification of an Instrument based on its performance characteristics. EXAMPLE Examples of instrument_type classifications include flow control, level control, pressure, or temperature. #### 4.2.188.2 sensor type The sensor_type specifies a classification of an Instrument actuator based on its operational characteristics. ### **4.2.188.3** signal_type The signal_type specifies a classification of an Instrument signal based on its physical characteristics. EXAMPLE Examples of instrument signal_type classifications include electric and pneumatic. #### 4.2.188.4 stream_interaction_type The stream_interaction_type specifies a classification of an Instrument based on how the sensor is positioned to sense the stream. EXAMPLE Examples of stream_interaction_types include outside, inserted, and immersed. # 4.2.189. Instrumentation and control component An Instrumentation_and_control_component is a type of Plant_item (see **4.2.260**) that is an individually identifiable item or combination of items that is part of the Instrumentation_and_control_system (see **4.2.190**). Each Instrumentation_and_control_component may be an Instrument (see **4.2.188**). EXAMPLE Examples of Instrumentation_and_control_component objects include wiring, switches, control valves, and gauges. # 4.2.190. Instrumentation_and_control_system An Instrumentation_and_control_system is a type of Plant_system (see **4.2.276**) that is a system of wiring, switches, controls, and other equipment associated with monitoring and controlling the performance characteristics of Plant_system objects. — type. The type specifies a designation that classifies the Instrumentation_and_control_system based on the kind of service that it provides. ### **4.2.191. Insulation** An Insulation is a type of Plant_item (see **4.2.260**) that is a material or assembly of materials used to provide resistance to heat flow. ## 4.2.192. Interfering shape element An Interfering_shape_element is the portion of the Plant_item_shape (see **4.2.273**) that is interfered with by a shape element of another Plant_item (see **4.2.260**). NOTE This application object is intended to support design integration, specifically the need to identify the elements of the designs that physically interfere with one another. The data associated with an Interfering_shape_element are the following: - first item; - interference_colour; - second item. #### 4.2.192.1 first item The first_item specifies the plant_item_id of one of the Plant_items (see **4.2.260**) that is interfering. ### 4.2.192.2 interference_colour The interference_colour specifies the colour that displays the element. #### 4.2.192.3 second item The second_item specifies the plant_item_id of one of the Plant_items(see **4.2.260**) that is interfering. # 4.2.193. Lap_joint_flange A Lap_joint_flange is a type of Flange (see **4.2.119**) that has a rounded contour at the intersection of the bore and the Flange face in order to mate to a Lap_joint_stub_end (see **4.2.194**). NOTE 1 This Flange (see **4.2.119**) can be swiveled around a Lap_joint_stub_end (see **4.2.194**) in order to align bolt holes. NOTE 2 Figure 38 depicts a typical Lap_joint_flange. Figure 38 - Lap_joint_flange # 4.2.194. Lap_joint_stub_end A Lap_joint_stub_end is a type of Fitting (see **4.2.118**) used with a Lap_joint_flange (see **4.2.193**), consisting of a cylinder or barrel with an integral flat ring or lap around one end with a rounded contour at the external
intersection of the barrel and the lap. NOTE 1 Figure 39 depicts a typical Lap_joint_stub_end. Figure 39 - Lap_joint_stub_end NOTE 2 End two is beveled for butt welding to pipe. The lap face normally has a flat or concentric serrated finish. This surface serves as the raised-face gasket surface of the Flange (see **4.2.119**) in Lap_joint_flange (see **4.2.193**) connections. The data associated with a Lap_joint_stub_end are the following: ``` end_1_connector; end_2_connector; length; stub_diameter; stub_thickness. ``` ### 4.2.194.1 end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) at the stub end face that connects to another Flange (see **4.2.119**) or Nozzle (see **4.2.222**). #### 4.2.194.2 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) at the stub end face that connects to a non-flange Piping_component (see **4.2.240**). ### 4.2.194.3 length The length specifies the external distance between the lap face and the other stub end face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.194.4 stub diameter The stub_diameter specifies the nominal diameter of the Lap_joint_stub_end. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### **4.2.194.5** stub thickness The stub_thickness specifies the distance between the inner and outer surfaces of the flared portion of the stub end. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.195. Lateral A Lateral is a type of Fitting (see **4.2.118**) that is a three-way fitting having two ends opposite each other in a straight run and a branch outlet projecting from the run at an angle. NOTE Figure 40 depicts a typical butt-weld Lateral. Figure 40 - Lateral The data associated with a Lateral are the following: - branch_angle; - centre_to_end_1_length; - centre_to_end_2_length; - centre_to_end_3_length; - end_1_connector; - -- end_2_connector; - end_3_connector. ## 4.2.195.1 branch_angle The branch_angle specifies the angle that the branch projects from the straight run. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.195.2 centre_to_end_1_length The centre_to_end_1_length specifies the distance between the point where the branch and straight run centrelines intersect and the straight-run face that is closest to the intersection. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.195.3 centre_to_end_2_length The centre_to_end_2_length specifies the distance between the point where the branch and straight run centrelines intersect and the straight-run face that is furthest from the intersection. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### ISO/CD 10303-227 4.2.195.4 centre_to_end_3_length The centre_to_end_3_length specifies the distance between the point where the branch and straight run centrelines intersect and the branch face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.195.5 end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) on the straight run that is closest to the intersection between the centrelines of the branch run and straight run. #### 4.2.195.6 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) on the straight run that is furthest from the intersection between the centrelines of the branch run and straight run. #### 4.2.195.7 end 3 connector The end_3_connector specifies the Piping_connector (see **4.2.242**) that connects to the branch line. #### 4.2.196. Line A Line is a type of Curve (see **4.2.85**) that is a one-dimensional, contiguous set of points that are positioned at a constant distance from a vector or that constitute the shortest distance between two points. ### 4.2.197. Line branch connection A Line_branch_connection is a connection between the logical termination of one Piping_system_line_segment (see **4.2.252**) and a point on another Piping_system_line_segment other than a termination. The former Piping_system_line_segment branches from the latter Piping_system_line_segment. The data associated with a Line_branch_connection are the following: — line_number. The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. # 4.2.198. Line_branch_termination A Line_branch_termination is a type of Piping_system_line_segment_termination (see **4.2.253**) that connects to a Piping_system_line_segment (see **4.2.252**) at a point other than a termination. The data associated with a Line_branch_termination are the following: — line number. The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. # 4.2.199. Line_less_piping_system A Line_less_piping_system is a type of Piping_system (see **4.2.249**) that does not have a line designation as defined in Piping_system_line (see **4.2.251**). # 4.2.200. Line_piping_system_component_assignment A Line_piping_system_component_assignment is the relationship between a Piping_system_line (see **4.2.251**) and a Piping_system_component (see **4.2.250**) that is part of, or satisfies the need specified by, the Piping_system_line. The data associated with a Line_piping_system_component_assignment are the following: — line number. The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. # 4.2.201. Line_plant_item_branch_connection A Line_plant_item_branch_connection is a connection between a Line_plant_item_branch_connector (see **4.2.202**) and a point on a Piping_system_line_segment (see **4.2.252**) other than a termination. The Line_plant_item_branch_connector branches from the Piping_system_line_segment. The data associated with a Line plant item branch connection are the following: - branch sequence id; - line number. ### 4.2.201.1 branch_sequence_id The branch_sequence_id specifies an alphanumeric identifier that indicates the order that branches extend from the main Piping_system_line_segment (see **4.2.252**). #### 4.2.201.2 line number The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. ## 4.2.202. Line plant item branch connector A Line_plant_item_branch_connector is a type of Functional_connector (see **4.2.128**) that participates in a Line_plant_item_branch_connection (see **4.2.201**). # 4.2.203. Line_plant_item_connection A Line_plant_item_connection is a connection between the logical termination of a Piping_system_line_segment (see **4.2.252**) and a Line_plant_item_connector (see **4.2.204**). The data associated with a Line_plant_item_connection are the following: — line number. The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. # 4.2.204. Line_plant_item_connector A Line_plant_item_connector is a type of Functional_connector (see **4.2.128**) that participates in a Line_plant_item_connection (see **4.2.203**). # 4.2.205. Line_plant_item_termination A Line_plant_item_termination is a type of Piping_system_line_segment_termination (see **4.2.253**) that connects to other Line_to_line_termination (see **4.2.207**) objects. The data associated with a Line_plant_item_termination are the following: — line number. The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. ## 4.2.206. Line to line connection A Line_to_line_connection is a connection between the logical terminations of two or more Piping_system_line_segment (see **4.2.252**) objects. # 4.2.207. Line_to_line_termination A Line_to_line_termination is a type of Piping_system_line_segment_termination (see **4.2.253**) that connects to other Line_to_line_termination objects. The data associated with a Line to line termination are the following: — line_number. The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. ## 4.2.208. Lined_piping A Lined_piping is a type of Piping _spool (see **4.2.246**) with coating material on the inner side. The data associated with a Lined_piping are the following: - lining_thickness_inside_pipe; - lining_thickness_at_flange_face.. ### 4.2.208.1 lining_thickness_inside_pipe The lining_thickness_inside_pipe specifies the thickness of the coating material on the inner surface of the Piping_spool (see **4.2.246**). #### 4.2.208.2 lining_thickness_at_flange_face The
lining_thickness_at_flange_face specifies the thickness of the coating material on the connecting face of the Flange (see **4.2.119**) at the ends of the Piping_spool (see **4.2.246**) if the spool is terminated by a Flange. ## 4.2.209. Load transference A Load_transference is a type of Plant_item_connection (see **4.2.263**) that identifies the purpose or role of the connection as being the transfer of load or force. ## 4.2.210. Location_in_building A Location_in_building is a type of Plant_item_location (see **4.2.272**) that is the position of the Plant_item (see **4.2.260**) relative to the Building (see **4.2.14**). ## 4.2.211. Location_in_plant A Location_in_plant is a type of Plant_item_location (see **4.2.272**) that is the position of the Plant_item (see **4.2.260**) relative to the Plant (see **4.2.258**). ### 4.2.212. Location in site A Location_in_site is a type of Plant_item_location (see **4.2.272**) that is the position of the Plant_item (see **4.2.260**) relative to the Site (see **4.2.313**). ## 4.2.213. Locked orientation connection A Locked_orientation_connection is a type of Plant_item_connection (see **4.2.263**) in which two Plant_item_connector (see **4.2.265**) objects are in physical contact and there is no relative motion of the connected Plant_item (see **4.2.260**) objects with respect to each other. NOTE A pump housing (containing the impeller and shaft) can be connected to the driver (motor) using a Locked_orientation_connection; this would mean that they move in unison. ## 4.2.214. Lug The Lug is a type of Pipe_support (see **4.2.248**) that consists of a simple plate with a hole to be hanged by. The Lug without a hole is used to support the weight in a manner similar to the Trunnion (see **4.2.363**). EXAMPLE A spring hanger with or without a hole. The data associated with a Lug are the following: - length. The length specifies the distance between the tip of the Lug and the location_point. # **4.2.215.** Male_end A Male_end is a type of Piping_connector (see **4.2.242**) end type that forms a compatible connection with a Female_end (see **4.2.116**). The data associated with a Male_end are the following - outer_end_preparation; - inner_end_preparation. ## 4.2.215.1 outer_end_preparation The outer_end_preparation specifies a description of the outer end of the connector that is necessary to prepare it for welding. #### 4.2.215.2 inner_end_preparation The inner end_preparation specifies a description of the inner end of the connector that is necessary to prepare it for welding. # 4.2.216. Manufacturing_line A Manufacturing_line is a type of Plant (see **4.2.258**) that is defined by the type of product(s) it produces. # 4.2.217. Material_specification_selection A Material_specification_selection is the candidate material specifications for piping system design. Each Material_specification_selection may be a Material_specification_subset_reference (see **4.2.218**). The data associated with a Material_specification_selection are the following: |
description; | |--------------------------------| |
material_specification_id; | |
required_or_optional; | |
selection_id; | |
type. | EXAMPLE The material_specification_selection for a piping component would have a of type of "Stainless Steel", a material_specification_id of "ASTM (American Society for Testing and Materials) A403", a selection_id of "SS A316S", a description of "standard material callout", and be required. ### **4.2.217.1** description The description specifies a textual explanation or summary of the selected material specification. ## 4.2.217.2 material_specification_id The material_specification_id specifies a unique identifier for the material specification selected. Material_specification_id is required for each Material_specification_selection. ## 4.2.217.3 required_or_optional The required_or_optional specifies whether the material specification is required or whether its use is optional. ### **4.2.217.4** selection id The selection_id specifies a unique identifier for the candidate material specification. Selection id is required for each Material specification selection. ## 4.2.217.5 type The type specifies a designation that classifies a Material_specification_selection based on selection criteria. # 4.2.218. Material_specification_subset_reference A Material_specification_subset_reference is a type of Material_specification_selection (see **4.2.217**) that is the reference parameters required to identify the applicable subset of a Required_material_description (see **4.2.299**). The data associated with a Material_specification_subset_reference are the following: — subset_id. The subset_id specifies a unique identifier for the specified subset portion of a Required_material_description (see **4.2.299**). Subset_id is required for each Material_specification_subset_reference. NOTE The subset reference is used when further subdivisions of the material specification selection are provided to allow for a more precise specification of the material. ## 4.2.219. Mitre_bend_pipe A Mitre_bend_pipe is a type of Pipe (see **4.2.236**) that is a change in Pipe direction accomplished through the use of two or more straight sections of Pipe that are beveled and joined on a line bisecting the angle of junction. NOTE Figure 41 depicts a typical Mitre_bend_pipe. Figure 41 - Mitre_bend_pipe The data associated with a Mitre_bend_pipe are the following: - number_of_segments; - radius; - sweep_angle. ## 4.2.219.1 number_of_segments The number_of_segments specifies the number of distinct straight sections of Pipe (see **4.2.236**) that constitute the Mitre_bend_pipe. ## 4.2.219.2 radius The radius specifies the measure of the radius of curvature for a Mitre_bend_pipe. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.219.3 sweep_angle The sweep_angle specifies the angular measure at the centre of curvature from one end of the Mitre_bend_pipe to other. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. # 4.2.220. Nipple A Nipple is a type of Pipe (see **4.2.236**) that is commonly acquired in prefabricated lengths and end preparations. Nipples are generally small in size in comparison to other pipes in a piping system. NOTE Figure 42 depicts a typical Nipple. Figure 42 - Nipple The data associated with a Nipple are the following — end_to_end_length. The end_to_end_length specifies the external distance between the end-one face and the end-two face of the nipple. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.221. Node A Node is a Functional_connector (see 4.2.128) that defines the positional placement for physical components along a Route (see 4.2.302). ## 4.2.222. Nozzle A Nozzle is a type of Plant_item (see **4.2.260**) that is designed to facilitate the connection of another Plant_item object to a piece of Equipment (see **4.2.104**). A Nozzle is generally permanently affixed to, and protrudes from, the Equipment item and is most commonly used to connect Piping_components (see **4.2.240**). #### 4.2.223. Nut A Nut is a type of Bolt_and_nut_component (see **4.2.9**) that is used to fasten two or more Plant_items (see **4.2.260**) together. The Nut is an internally threaded fastener for Bolts (see **4.2.8**) or screws. The data associated with a Nut are the following: — nut_type. The nut_type specifies a classification of the Nut based on its shape characteristics. EXAMPLE Examples of nut_type designations include hexagon, hexagon_with_washer, and domed_cap. ## 4.2.224. Offline_instrument An Offline_instrument is a type of Instrument (see **4.2.188**) that monitors the conditions of a system but is not an integral element of the system. EXAMPLE Local panels, analyzer houses, junction box are examples of Offline_instruments. ## 4.2.225. Olet An Olet is a type of Fitting (see **4.2.118**) welded onto a hole in the side of a Pipe (see **4.2.236**) or other Fitting. NOTE 1 The primary use of an Olet is for making small branch connections or connecting Instrument (see **4.2.188**) lines to Piping_component (see **4.2.240**) objects. NOTE 2 Figure 43 depicts a typical butt-welded latrolet, a kind of Olet. Figure 43 - Olet EXAMPLE Other kinds of Olets include weldolets, sweepolets, elbowlets, and sockolets. The data associated with an Olet are the following: - base_outside_diameter; - branch_angle; | — end_1_connector; | |---------------------------| | — end_2_connector; | | — length; | | — skirt_outside_diameter. | ## 4.2.225.1 base outside diameter The base_outside_diameter specifies the external diameter of the Olet at the surface that mates with the straight-run Pipe (see **4.2.236**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## **4.2.225.2** branch_angle The branch_angle specifies the angle that the branch projects from the straight run. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.225.3 end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) that connects to the main Pipe (see **4.2.236**) or Fitting (see **4.2.118**). ## 4.2.225.4 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) that connects to the branch line. ### 4.2.225.5 length The length specifies the distance between the end-one face and the end-two face at the centreline of the Olet. It may be specified as a single value or as a range of values. NOTE See annex L for a
discussion of attributes that may be assigned a single value or a range of values. ### 4.2.225.6 skirt_outside_diameter The skirt_outside_diameter specifies the maximum external diameter of the Olet (measured perpendicular to the Olet centreline). It may be specified as a single value or as a range of values. NOTE 1 See annex L for a discussion of attributes that may be assigned a single value or a range of values. NOTE 2 The sides of an Olet are tapered (not vertical). ## 4.2.226. Orifice flange An Orifice_flange is a type of Flange (see **4.2.119**) used to assemble an Inline_instrument (see **4.2.183**) to meter the flow of liquids or gases in a pipe. NOTE 1 Orifice_flange objects are used in pairs in conjunction with an Orifice_plate (see 4.2.227). NOTE 2 Figure 44 depicts a typical Orifice_flange and Orifice_plate (see 4.2.227) configuration. Figure 44 - Orifice_flange The data associated with an Orifice_flange are the following: - jacking_screw_orientation; - tap; - tap_centreline_orientation. ## 4.2.226.1 jacking_screw_orientation The jacking_screw_orientation specifies the angular position of the threaded bolt holes in an Orifice_flange. NOTE Jacking screws are used to separate the Orifice_flange objects sufficiently to remove or insert the Orifice_plate (see **4.2.227**). ## 4.2.226.2 tap The tap specifies the Piping_connector (see **4.2.242**) designated as the tap. ## 4.2.226.3 tap_centreline_orientation The tap_centreline_orientation specifies the orientation of the tap's centreline of the Orifice_flange. It is specified as direction values within the plant coordinate system. # 4.2.227. Orifice_plate An Orifice_plate is a type of Fitting (see **4.2.118**) that is a disk with a calibrated hole that is placed in a Pipe (see **4.2.236**) to measure flow. NOTE Figure 45 depicts a typical Orifice_plate. Figure 45 - Orifice_plate The data associated with an Orifice_plate are the following: - beta_ratio; - bore_diameter; - outside_diameter; - thickness. ## 4.2.227.1 beta_ratio The beta_ratio is defined as the diameter of the hole in the Orifice_plate divided by the inside diameter of the Pipe (see **4.2.236**). ## **4.2.227.2** bore_diameter The bore_diameter specifies the diameter of the hole in the Orifice_plate. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.227.3 outside diameter The outside_diameter specifies the external diameter of the Orifice_plate. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### **4.2.227.4** thickness The thickness specifies the perpendicular distance between the two faces of the Orifice_plate. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.228. Outline_shape An Outline_shape is a type of Shape_representation (see **4.2.309**) that is a 3D spatial volume that corresponds to the bounding surface features of a Plant_item (see **4.2.260**). NOTE Contrast with Detail_shape (see **4.2.88**) and Envelope_shape (see **4.2.103**). An Outline_shape is a simple geometric representation of Plant_item (see **4.2.260**); this representation may be called a cartoon. The representation is a more accurate representation of the shape of the Plant_item than that provided by an Envelope_shape, but not nearly as precise as a Detailed_shape. ## 4.2.229. Outside_and_thickness An Outside_and_thickness is a type of Piping_size_description (see **4.2.244**) that describes the size by providing the outside diameter and thickness values. The data associated with an Outside and thickness are the following: - outside_diameter; - thickness. ## 4.2.229.1 outside_diameter The outside_diameter specifies the external diameter of the Piping_system_component (see **4.2.250**) or Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.229.2 thickness The thickness specifies the minimum distance between the inside and outside piping wall surfaces of the Piping_system_component (see **4.2.250**) or Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.230. Paddle blank A Paddle_blank is a type of Blank (see **4.2.5**) that reserves space between two Flange (see **4.2.119**) objects and blocks the flow of material. NOTE A Paddle_blank has a handle that permits removal or repositioning of the Paddle_blank. The name is derived from the fact that the Paddle_blank looks like a ping pong paddle. The data associated with a Paddle blank are the following: - paddle length; - paddle_width. ## 4.2.230.1 paddle_length The paddle_length specifies the length of the handle on the Paddle_blank. It may be specified as a single value or as a range of values. NOTE 1 The length is measured from the outside diameter of the Blank (see **4.2.5**). NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.230.2 paddle_width The paddle_width specifies the width of the handle on the Paddle_blank. It may be specified as a single value or as a range of values. NOTE 1 See annex L for a discussion of attributes that may be assigned a single value or a range of values. NOTE 2 Figure 46 depicts a typical Paddle_blank. Figure 46 - Paddle_blank # 4.2.231. Paddle_spacer A Paddle_spacer is a type of Spacer (see **4.2.322**) that reserves space between two Flange (see **4.2.119**) objects and permits flow through the Pipe (see **4.2.236**). NOTE 1 A Paddle_spacer has a handle that permits its removal or repositioning. The inner diameter of the Paddle_spacer may be less than the diameter of the Pipe (see **4.2.236**), thus altering flow. NOTE 2 Figure 47 depicts a typical Paddle_spacer. Figure 47 - Paddle_spacer The data associated with a Paddle_spacer are the following: - inside_diameter; - paddle_length; - paddle_width. ## 4.2.231.1 inside diameter The inside_diameter specifies the diameter of the bore hole through the Paddle_spacer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.231.2 paddle_length The paddle_length specifies the length of the handle of the Paddle_spacer. It may be specified as a single value or as a range of values. NOTE 1 The length is measured from the outside diameter of the Paddle_spacer. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.231.3 paddle_width The paddle_width specifies the width of the handle of the Paddle_spacer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. # 4.2.232. Perforated_cap A Perforated_cap is a type of Cap (see **4.2.25**) with a hole on its closing surface. NOTE Figure 48 depicts a typical Perforated_cap. Figure 48 - Perforated_cap The data associated with a Perforated_cap are the following: - end_2_connector; - hole_diameter. ## 4.2.232.1 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) where the inside Pipe (see **4.2.236**) of the jacketed piping connects to the Perforated_cap. ## 4.2.232.2 hole_diameter The hole_diameter is the diameter of the hole in the Perforated_cap. # 4.2.233. Perforated_plate A Perforated_plate is a type of Plate (see **4.2.279**) with a hole on its surface. The data associated with a Perforated_plate are the following: - end_2_connector; - hole_diameter. ## 4.2.233.1 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) where the inside Pipe (see **4.2.236**) of the jacketed piping connects to the Perforated_plate. ### 4.2.233.2 hole_diameter The hole_diameter is the diameter of the hole in the Perforated_plate. ## 4.2.234. Physical_connector A Physical_connector is a type of Plant_item_connector_occurrence (see **4.2.266**) that represents the physical aspects of the Plant_item_connector_occurrence. # 4.2.235. Physical_design_view A Physical_design_view is a type of Plant_item_design_view (see **4.2.268**) that describes the physical and spatial characteristics of a Plant_item (see **4.2.260**). # 4.2.236. Pipe A Pipe is a type of Piping_component (see **4.2.240**) that is a hollow cylindrical conveyance, with a constant radius for the cross-sectional circle, for directing fluid, vapour, or particulate flow. Each Pipe may be one of the following: a Mitre_bend_pipe (see **4.2.219**), a Nipple (see **4.2.220**), a Straight_pipe (see **4.2.332**), or a Swept_bend_pipe (see **4.2.349**). NOTE 1 In most cases, the Pipe will conform to the dimensional requirements for nominal pipe size as tabulated in national standards such as American National Standards Institute (ANSI) B36.10 and ANSI B36.19. NOTE 2 This definition does not exclude tubing and flex hoses from consideration as Pipe. The data associated with a Pipe are the following: - additional_length; - end_1_connector; - end_2_connector. ## 4.2.236.1 additional_length The additional_length specifies the length of Pipe that is extended from the designed length of the Pipe to allow for installation error. ### 4.2.236.2 end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) that connects to one end of the Pipe. ### 4.2.236.3 end 2 connector The end_2_connector specifies the Piping_connector (see **4.2.242**) that connects to the other end of the Pipe. # **4.2.237. Pipe_closure**
A Pipe_closure is a type of Fitting (see **4.2.118**) used to close an end of a Piping_component (see **4.2.240**). Each Pipe_closure may be one of the following: Cap (see **4.2.25**), Plug (see **4.2.280**), or Plate (see **4.2.279**). NOTE 1 Blind_flange (see 4.2.6) objects also perform the function of closing a Piping_system (see 4.2.249). However, industry terminology treats them differently and they have been defined as separate objects. NOTE 2 Figure 49 depicts a typical butt-weld Pipe Cap, which is a kind of Pipe closure. Figure 49 - Butt-weld Pipe Cap The data associated with a Pipe_closure are the following: - end_1_connector; - shape_type. ## 4.2.237.1 end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) that connects to the Pipe (see **4.2.236**). ### 4.2.237.2 shape_type The shape_type is a type of Shape_representation (see **4.2.309**). # 4.2.238. Piping_assembly A Piping_assembly is an assembled collection of piping Plant_item (see **4.2.260**) objects. The data associated with a Piping_assembly are the following: — piping_assembly_number. The piping_assembly_number specifies an alphanumeric identifier assigned to the Piping_assembly. NOTE A Piping_asembly may be defined to meet transportation, fabrication, or erection requirements. ## 4.2.239. Piping_assembly_assignment A Piping_assembly_assignment is the identification of the Piping_assembly (see **4.2.238**) that a Piping component (see **4.2.240**) belongs to. ## 4.2.240. Piping_component A Piping_component is a type of Piping_system_component (see **4.2.250**) whose primary function is the conveyance or control of fluid flow. Each Piping_component may be one of the following: a Fitting (see **4.2.118**), a Pipe (see **4.2.236**), or a Valve (see **4.2.367**). The data associated with a Piping_component are the following: | — pmi_record; | |------------------------------| | — side_connector; | | <pre>— standard_point;</pre> | | — mill_sheet_number. | ## 4.2.240.1 pmi_record The pmi_record attribute specifies an identifier of the positive material identification document for a Piping_component. ## 4.2.240.2 side_connector The side_connector specifies the Piping_connector (see **4.2.242**) that is located between the two ends of the Piping_component. There may be more than one side_connector for a Piping_component. ## 4.2.240.3 standard_point The standard_point specifies an x, y, z coordinate position defined for the Piping_component that will position the Piping_component in the Plant (see **4.2.258**) when overlayed on the Node (see **4.2.221**). ## 4.2.240.4 mill_sheet_number The mill_sheet_number specifies an identifier of the document that comes from the mill providing a record of the raw material that comprises the Piping_component. ## 4.2.241. Piping_component_inspection_record A Piping_component_inspection_record is a collection of information that captures the result of an evaluation of an observed value for a characteristic of a Piping_component (see **4.2.240**) against an expected, designed or prescribed value for that characteristic, as well as information to evaluate the acceptability of the observed value. The data associated with a Piping_component_inspection_record are the following: - inspected_property_name; - inspected_property_tolerance; - inspected_property_measured_value. ## 4.2.241.1 inspected_property_name The inspected_property_name specifies the characteristic for which information is being recorded. The inspected_property_name may be one of the following: - branch angle; - flange face type; - threaded type; - end preparation shape; - flange inside diameter dimension; - flat side orientation; - hole straddle centreline orientation; - hub inside diameter dimension; - hub outside diameter dimension; - hub weld point diameter dimension: - hub weld point thickness dimension; - inside diameter dimension; - longitudinal welding seam orientation; - nominal size; - pipe schedule; - pressure rating; - weld point outside diameter dimension; - weld point thickness dimension; - weld point inside diameter dimension; - stand off dimension; - centreline radius dimension; - outside diameter dimension; - thickness dimension; - swept angle; - ovality; - tap orientation; - paddle orientation. ## 4.2.241.2 inspected_property_tolerance The inspected_property_tolerance specifies the acceptable deviation for the measured result of the inspection. ## 4.2.241.3 inspected_property_measured_value The inspected_property_measured_value specifies the recorded result of the inspection. ## 4.2.242. Piping_connector A Piping_connector is a type of Plant_item_connector (see **4.2.265**) that is intended to establish a material flow connection between two Plant_item (see **4.2.260**) objects. Each Piping_connector may be one of the following: a Buttweld (see **4.2.16**), a Clamped (see **4.2.63**) a Flanged (see **4.2.120**), a Pressure_fit (see **4.2.285**), a Socket (see **4.2.319**), a Stub_in (see **4.2.338**), or a Threaded (see **4.2.352**). The end_type of each Piping_connector may be one of the following: a Branch_hole (see **4.2.12**), a Female_end (see **4.2.116**), a Flanged_end (see **4.2.121**), a Flared_end (see **4.2.122**), a Grooved_end (see **4.2.137**), or a Male_end (see **4.2.215**). The data associated with a Piping_connector are the following: - connector_flow_direction; - connector_specification; - name. ## 4.2.242.1 connector_flow_direction The connector_flow_direction specifies an indication of the way process fluid moves past the Plant_item (see **4.2.260**). ### 4.2.242.2 connector specification The connector_specification identifies the specification associated with the Piping_connector. There may be more than one connector specification for a Piping_connector. EXAMPLE Examples of the identified connector_specification include insulation specification, end preparation specification, and thread specification. ### 4.2.242.3 name The name specifies a textual label given to the Piping_connector. ## 4.2.243. Piping_connector_service_characteristic A Piping_connector_service_characteristic is the conditions that the Piping_connector (see **4.2.242**) is designed to withstand. The data associated with a Piping connector service characteristic are the following: - design_pressure; - design_temperature. ### 4.2.243.1 design_pressure The design_pressure specifies the maximum allowable pressure at the Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE 1 This value is normally created as part of doing 3D analysis of the piping system design. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.243.2 design_temperature The design_temperature specifies the maximum allowable temperature at the Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE 1 This value is normally created as part of doing 3D analysis of the piping system design. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. # 4.2.244. Piping_size_description A Piping_size_description is used to explain or summarize the physical size of a Piping_connector (see **4.2.242**) or Piping_system_component (see **4.2.250**), based on a set of dimensional characteristics, and an optional dimensional standard. Each Piping_size_description is either an Inside_and_thickness (see **4.2.185**), an Outside_and_thickness (see **4.2.229**), a Pressure_class (see **4.2.284**), or a Schedule (see **4.2.303**). NOTE A Piping_size_description is used to specify the size of a Piping_component (see **4.2.240**) as a whole (where the size is constant over the extant of the component) or to each individual connector of the Piping_component (where the sizes of each different connector differ.) The data associated with a Piping size description are the following: - dimensional standard; - ovality_allowance. ### 4.2.244.1 dimensional_standard The dimensional_standard specifies a designation for the standard used to dimension the Pipe (see **4.2.236**). The dimensional_standard need not be specified for a particular Piping_size_-description. EXAMPLE Examples of dimensional_standard designations include ANSI and DIN. ## 4.2.244.2 ovality_allowance The ovality_allowance specifies the acceptable deviation or tolerance allowed in the `out-of-roundness' of the Piping_connector (see **4.2.242**) or Piping_system_component (see **4.2.250**). In other words, it specifies how much the Piping_connector or Piping_system_component can deviate from a perfect circle. The ovality_allowance need not be specified for a particular Piping_size_description. # 4.2.245. Piping_specification A Piping_specification is a specification of conditions such as pressure, material, and corrosion allowance that must be met in a Piping_system_line_segment (see **4.2.252**) and may include a list of Piping_component (see **4.2.240**) objects by size range that meet these conditions. NOTE The Piping_specification is used in Spec-driven design, where the user specifies the size and component type, and the Piping_specification is used to look-up the correct component characteristics. The components listed in the Piping_specification may reference component catalogues. The data associated with a Piping_specification are the following: ### 4.2.245.1 name The name specifies a textual label given to the Piping_specification. ### 4.2.245.2 owner The owner specifies the designation given to the person or organization that created and maintains the Piping_specification. ### 4.2.245.3 piping specification id The piping_specification_id specifies a unique identifier for the Piping_specification. Piping_specification_id is required for each Piping_specification. ## 4.2.245.4 service_description The service_description specifies a textual explanation or summary of the process stream conditions that
are supported by the Plant_item (see **4.2.260**) objects described in the Piping_specification. # 4.2.246. Piping_spool A Piping spool is a collection of piping Plant item (see **4.2.260**) objects. A Piping_spool is an assembly of Piping_components (see **4.2.240**) and applicable Plant_items (see **4.2.260**) such as Piping_support (see **4.2.248**) attachment to be shop fabricated and physically connected into one item. | The data | associated | with | a Piping_ | _spool | are the | he fol | lowing: | |----------|------------|------|-----------|--------|---------|--------|---------| | | | | | | | | | | — tag_number; | |---------------------------| | <pre>— piping_type;</pre> | — temporary_flag. ## 4.2.246.1 tag_number The tag_number is a unique identification of the Piping_spool. ## 4.2.246.2 piping_type The piping_type specifies whether a Piping_spool is comprised of single or jacketed piping. The value of piping_type is one of the following: — jacketed — single ## 4.2.246.2.1 jacketed Jacketed Piping_spool has inner piping and outer piping. ## 4.2.246.2.2 single A single Piping_spool has no jacket. ## 4.2.246.3 temporary_flag The temporary flag specifies whether the Piping_spool is a temporary spool, usually having flanged connectors, that is to be replaced with a different Piping_component (see **4.2.240**) at some point in the construction of the Plant (see **4.2.258**). # 4.2.247. Piping_spool_inspection_record A Piping_spool_inspection_record is a collection of information that captures the result of an evaluation of an observed value for a characteristic of a Piping_spool (see **4.2.246**) against an expected, designed or prescribed value for that characteristic, as well as information to evaluate the acceptability of the observed value. The data associated with a Piping_spool_inspection_record are the following — inspected_preoperty_name; — inspected_property_tolerance; — inspected_property_measured_value. ## 4.2.247.1 inspected_property_name The inspected_property_name specifies the characteristic for which information is being recorded. The inspected property name may be one of the following: — piping spool configuration inspection; - pressure test; - leak test; - visual examination; - surface painting; - marking; - packed figure; - end protection; - high voltage for pin hole detective; - lining thickness. ## 4.2.247.2 inspected_property_tolerance The inspected_property_tolerance specifies the acceptable deviation for the measured result of the inspection. ## 4.2.247.3 inspected_property_measured_value The inspected_property_measured_value specifies the recorded result of the inspection. ## 4.2.248. Piping_support A Piping_support is a type of Support_component (see **4.2.343**) that is fabricated onto the pipe, and supports the Piping_spool (see **4.2.246**) when it is installed into the Plant (see **4.2.258**). The data associated with a Piping_support are the following: - end_1_connector; - location_point; - orientation. ### 4.2.248.1 end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) on the Piping_support to the pipe. ### **4.2.248.2 location point** The location_point is a standard point on Piping_component (see **4.2.240**) at which the Piping_support is attached. EXAMPLE When a Base_elbow_support (see 4.2.3) is attached to an Elbow (see 4.2.98), the location_point is the centre of the Elbow, where the centrelines of two arms of Elbow intersect. When a Base_line_support (see 4.2.4) is attached to a Straight_pipe (see 4.2.332), the location_point is the intersection of the centrelines of the Straight_pipe and the main body of the Base_line_support. #### **4.2.248.3** orientation The orientation specifies a unit vector in the direction of the main part of the Piping_support. The vector defines the layout of the Piping_support. ## 4.2.248.4 piping support types Necessary information for piping shop fabrication: type, location point, orientation and dimensional parameters. Types of Piping_supports include: Base_elbow_support (Adjustable and Non-adjustable) (see **4.2.3**), Base_line_support (see **4.2.4**), Dummy_leg (see **4.2.92**), Eccentric_base_elbow_support (see **4.2.93**), Lug (see **4.2.214**), Shoe (see **4.2.312**), Stopper (see **4.2.331**), and Trunnion (see **4.2.363**). ## 4.2.249. Piping_system A Piping_system is a type of Plant_system (see **4.2.276**) that is a system of interconnected Plant_item (see **4.2.260**) objects that convey fluid, vapour, or particulate flow throughout a plant. Each Piping_system may be a Line_less_piping_system (see **4.2.199**). EXAMPLE Methods of flow conveyance through the Piping_system include mechanical, gravitational, and electromagnetic induction. The data associated with a Piping_system are the following: | 0 | \sim | d | Δ | • | |-------|--------|---|---|---| |
U | v | u | C | • | — description. ### 4.2.249.1 code The code specifies the name of the specification that the Piping system needs to conform to. ## **4.2.249.2 description** The description specifies a textual explanation or summary of the Piping_system. # 4.2.250. **Piping_system_component** A Piping_system_component is a type of Plant_item (see **4.2.260**) that is a constituent element of a Piping_system (see **4.2.249**). Each Piping_system_component may be one of the following: an Inline_equipment (see **4.2.182**), an Inline_instrument (see **4.2.183**), a Piping_component (see **4.2.240**), a Process_ducting (see **4.2.286**), or a Specialty_item (see **4.2.324**). The data associated with a Piping system component are the following: | <pre>— coating_reference;</pre> | |---------------------------------| | — corrosion_allowance; | | <pre>— heat_tracing_type;</pre> | | — lining. | ## 4.2.250.1 coating_reference The coating_reference specifies a reference to the specification of the substances used to coat the surfaces of a Piping_system_component. For a given Piping_system_component, the value of this attribute overrides any global specification. ### 4.2.250.2 corrosion allowance The corrosion_allowance specifies the depth that corrosion may encroach below the surface of a Piping_system_component before action is required. For a given Piping_system_component, the value of this attribute overrides any global specification. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. The depth of the corrosion may vary over the extent of the Piping_component (see **4.2.240**). ## 4.2.250.3 heat_tracing_type The heat_tracing_type specifies the means utilized to impart a temperature increase to the Piping_system_component by an external wrapping or coiling. For a given Piping system component, the value of this attribute overrides any global specification. NOTE Types may include electrical or steam. ## 4.2.250.4 lining The lining specifies a description of the substances used to line the internal surfaces of a Piping_system_component. ## 4.2.251. Piping system line A Piping_system_line is a logical component of a Piping_system (see **4.2.249**) and is composed of a collection of interconnected Piping_system_line_segment (see **4.2.252**) objects. The data associated with a Piping system line are the following: - line number; - P and I reference. ## 4.2.251.1 line_number The line_number specifies an alphanumeric identifier assigned to the Piping_system_line and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. EXAMPLE A1A-PX-100-4-150, is a coded number that identifies the Piping_system_line and the main design criteria - specification = A1A, process = PX, line number = 100, line size = 4, and pressure rating = 150. ### 4.2.251.2 P and I reference The P_and_I_reference specifies the piping and instrumentation diagram that depicts the Piping_system_line. ## 4.2.252. Piping_system_line_segment A Piping_system_line_segment is an element of a Piping_system_line (see **4.2.251**). A Piping_system_line_segment terminates at a functional Plant_item_connector (see **4.2.265**), a tap into a Piping_system_line, a point where the stream diverges or converges, a vent, or a drain. The data associated with a Piping_system_line_segment are the following: | — coating_reference; | |------------------------| | — corrosion_allowance; | | — design_pressure; | | — design_temperature; | | — elevation; | | — heat_tracing_type; | | — line_number; | | — line_size. | ## 4.2.252.1 coating_reference The coating_reference specifies a reference to the specification that details the coating requirements of the Piping_component (see **4.2.240**) objects associated with the Piping_system_line (see **4.2.251**). ## 4.2.252.2 corrosion_allowance The corrosion_allowance specifies the depth that corrosion may encroach below the surface of components on a Piping_system_line_segment before action is required. For a given Piping_system_component (see **4.2.250**), the value of this attribute overrides any global specification. ## 4.2.252.3 design_pressure The design_pressure specifies the requirement for maximum allowable pressure of the Piping_component (see **4.2.240**) objects associated with the Piping_system_line (see **4.2.251**). ## 4.2.252.4 design_temperature The design_temperature specifies the requirement for maximum allowable temperature of the Piping_component (see **4.2.240**) objects associated with the Piping_system_line (see **4.2.251**). ### **4.2.252.5** elevation The elevation specifies the distance above sea level that the piping assigned to the line should exist. ## 4.2.252.6 heat_tracing_type The heat_tracing_type specifies the heating method used to maintain temperature in the Piping_system_line (see **4.2.251**). EXAMPLE Heating method designations include steam tracing and electrical. ## **4.2.252.7 line_number** The line_number specifies an alphanumeric identifier assigned to the
Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. ### 4.2.252.8 line_size The line_size specifies the intended diameter of the piping to be selected to satisfy the Piping_system_line (see **4.2.251**). The line_size need not be specified for a particular Piping_system_line_segment where the Piping_system_line_segment corresponds to one Piping_system_component (see **4.2.250**). NOTE When the line_size is not specified, it is either ambiguous due to the nature of the Piping_system_component (see **4.2.250**) such as a Reducer (see **4.2.292**), or derivable from one or more of the connecting Piping_system_line_segments. # 4.2.253. Piping_system_line_segment_termination A Piping_system_line_segment_termination is one of two logical end-points of a Piping_system_line_segment (see **4.2.252**). Each Piping_system_line_segment_termination is either: a Line_branch_termination (see **4.2.198**), a Line_to_line_termination (see **4.2.207**), a Line_plant_item_termination (see **4.2.205**), or Piping_system_line_termination (see **4.2.254**). NOTE Piping_system_line (see **4.2.251**) objects are composed of individual Piping_system_line_segment (see **4.2.252**) objects. Piping_system_line_segment objects are connected through Piping_system_line_segment_termination objects. The data associated with a Piping_system_line_segment_termination are the following: | — flow_direction; | | |-------------------|--| | — line_number. | | ## 4.2.253.1 flow_direction The flow_direction specifies the direction of material flow at the Piping_system_line_segment_termination. The value of the flow_direction attribute shall be one of the following: | h | ^ | t l | h | , | |---|---|-----|---|---| | v | v | u | ш | • | | — | in; | |----------|----------------| | <u> </u> | not_specified; | | | out. | **4.2.253.1.1 both:** material may flow in either direction past the Piping_system_line_segment_termination. **4.2.253.1.2 in:** material flows into the line segment past the Piping_system_line_segment_termination. **4.2.253.1.3 not_specified:** the direction of material flow past the Piping_system_line_segment_termination is not specified. **4.2.253.1.4 out:** material flows out of the line segment past the Piping_system_line_segment_termination. ### 4.2.253.2 line number The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. ## 4.2.254. Piping_system_line_termination A Piping_system_line_termination is a type of Piping_system_line_segment_termination (see **4.2.253**) that begins or ends a Piping_system_line (see **4.2.251**). The data associated with a Piping_system_line_termination are the following: | — location; | | |------------------|----| | — position_on_pi | pe | | — start_or_end. | | #### 4.2.254.1 location The location specifies the relative distance in the X, Y, Z directions of the position of the end of the Piping_system_line (see **4.2.251**), from the plant origin. The location position may also be defined by where it connects to an upstream piece of Equipment (see **4.2.104**) or Piping_system_line. ### 4.2.254.2 position_on_pipe The position_on_pipe specifies an indicator of the relationship between the point and the Piping_component (see **4.2.240**) that will eventually satisfy it. NOTE If the indicator is not specified, the assumed value is Centre Of Pipe (COP). EXAMPLE A position_on_pipe may be COP or BOP indicating that the location of the Piping system line termination location is on the centre or bottom of the pipe. #### 4.2.254.3 start or end The start_or_end specifies an enumerated value that defines the side of the pipe on which the line termination lies. A value of 'start' indicates the line termination is on the upstream end, and a value of 'end' indicates that the line termination is on the downstream end. ## **4.2.255.** Plain washer A Plain_washer is a type of Washer (see **4.2.369**). The shape of the Plain_washer is a thin flat ring. The data associated with a Plain_washer are the following: - thickness: — outside_diameter. ### 4.2.255.1 thickness The thickness specifies the distance between two faces of the Plain_washer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.255.2 outside_diameter The outside_diameter specifies the external diameter of the Plain_washer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.256. Planned_physical_plant A Planned_physical_plant is the set of physical and spatial characteristics that a Plant (see **4.2.258**) can have, including siting, location, and orientation. NOTE A Planned_physical_plant can also be the basis for locating other items such as Plant_item (see **4.2.260**) objects, Plant_item_location (see **4.2.272**). ## 4.2.257. Planned_physical_plant_item A Planned_physical_plant_item is a type of Plant_item_instance (see **4.2.269**) that is intended to have physical existence in the real world and that has been used or instanced in a design. NOTE Additionally, a Planned_physical_plant_item is always intended to be `physical' as opposed to purely volumetric. In general, this means that anything that would pose a hard physical impediment to a kick (e.g., a pump) is a physical item, and anything that does not (e.g., an escape route or the water in a cooling pond) is purely volumetric. | The data associated with a Planned_physical_plant_item are the following: — stock_code; — global_unambiguous_identifier. 4.2.257.1 stock_code The stock_code is an identifier of an in-stock item that may be necessary to be included in a piece of shop fabricated piping. 4.2.257.2 global_unambiguous_identifier A global_unambiguous_identifier is a unique, persistent identifier of the item consisting of a concatenation of a company_id and a local_id generated by the company. 4.2.257.2.1 company_id The company_id specifies a unique identifier for the company that created the data. The string is left justified and blank filled. 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shal be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another icase of failure. | |---| | — global_unambiguous_identifier. 4.2.257.1 stock_code The stock_code is an identifier of an in-stock item that may be necessary to be included in a piece of shop fabricated piping. 4.2.257.2 global_unambiguous_identifer A global_unambiguous_identifier is a unique, persistent identifier of the item consisting of a concatenation of a company_id and a local_id generated by the company. 4.2.257.2.1 company_id The company_id specifies a unique identifier for the company that created the data. The string is left justified and blank filled. 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left
justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shall be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another icase of failure. The data associated with a Plant are the following: | | The stock_code is an identifier of an in-stock item that may be necessary to be included in a piece of shop fabricated piping. 4.2.257.2 global_unambiguous_identifer A global_unambiguous_identifier is a unique, persistent identifier of the item consisting of a concatenation of a company_id and a local_id generated by the company. 4.2.257.2.1 company_id The company_id specifies a unique identifier for the company that created the data. The string is left justified and blank filled. 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shal be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another it case of failure. | | The stock_code is an identifier of an in-stock item that may be necessary to be included in a piece of shop fabricated piping. 4.2.257.2 global_unambiguous_identifier A global_unambiguous_identifier is a unique, persistent identifier of the item consisting of a concatenation of a company_id and a local_id generated by the company. 4.2.257.2.1 company_id The company_id specifies a unique identifier for the company that created the data. The string is left justified and blank filled. 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shal be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another icase of failure. | | 4.2.257.2 global_unambiguous_identifier A global_unambiguous_identifier is a unique, persistent identifier of the item consisting of a concatenation of a company_id and a local_id generated by the company. 4.2.257.2.1 company_id The company_id specifies a unique identifier for the company that created the data. The string is left justified and blank filled. 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356) or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shall be considered the elevation of the compant space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another i case of failure. The data associated with a Plant are the following: | | A global_unambiguous_identifier is a unique, persistent identifier of the item consisting of a concatenation of a company_id and a local_id generated by the company. 4.2.257.2.1 company_id The company_id specifies a unique identifier for the company that created the data. The string is left justified and blank filled. 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shal be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another icase of failure. The data associated with a Plant are the following: | | 4.2.257.2.1 company_id The company_id specifies a unique identifier for the company that created the data. The string is left justified and blank filled. 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shal be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another icase of failure. The data associated with a Plant are the following: | | The company_id specifies a unique identifier for the company that created the data. The string is left justified and blank filled. 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shal be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another it case of failure. The data associated with a Plant are the following: | | 4.2.257.2.2 local_id The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shal be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a
plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another icase of failure. The data associated with a Plant are the following: | | The local_id specifies a persistent identifier which uniquely identifies this item throughout the company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shall be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another it case of failure. The data associated with a Plant are the following: | | company. It is assigned at the time the item definition is created. The string is left justified and blank filled. 4.2.258. Plant A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shall be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another i case of failure. The data associated with a Plant are the following: | | A Plant is a portion of an installation (or the entire installation) required to operate to produce products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shall be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another it case of failure. The data associated with a Plant are the following: | | products. Each Plant may be one of the following: a Manufacturing_line (see 4.2.216), a Train (see 4.2.356), or a Unit (see 4.2.365). The z-axis of the local coordinate system of the Plant shall be considered the elevation of the coordinate space. NOTE Manufacturing_lines (see 4.2.216), Trains (see 4.2.356), and Units (see 4.2.365), may be considered as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another i case of failure. The data associated with a Plant are the following: | | as sub-plants of a Plant because they perform all of the same functions as a plant and may be considered as a plant. They are distinct, they produce products based on input resources, and they are (relatively) independent of other plant/sub-plants. Trains, for instance, provide duplicate functionality of one another i case of failure. The data associated with a Plant are the following: | | | | | | — definition_coordinate_system; | | — description; | | — length_between_perpendiculars; | — name; — operator; | — owners; | | |---------------|--| | — plant_id; | | | — plant_type. | | ## 4.2.258.1 definition_coordinate_system The definition_coordinate_system is the origin and axes of the Plant that serve as the basis for the location and orientation of Plant_items (see **4.2.260**) and subplants in the Plant. ## **4.2.258.2** description The description specifies a textual explanation or summary of the Plant. The description need not be specified for a particular Plant. There may be more than one description for a Plant. ## 4.2.258.3 length_between_perpendiculars Length_between_perpendiculars specifies the distance between perpendicular elements in the model. This is used to specify layout grids in a model, and to specify the horizontal, longitudinal distance between the aft and forward perpendiculars in ship models. EXAMPLE Column spacing in a Plant is an example of layout grids in a model. ### 4.2.258.4 name The name specifies a textual label given to the Plant. ### 4.2.258.5 operator The operator specifies the name of the organization(s) responsible for the operation of the Plant. For a given Plant, the operator need not be specified. #### 4.2.258.6 owners The owners specifies the name of the organization(s) that owns the Plant. For a given Plant, the owners need not be specified. ### 4.2.258.7 plant_id The plant_id specifies a unique identifier for the Plant. Plant_id is required for each Plant. ### 4.2.258.8 plant type Plant_type specifies a designation that classifies a Plant based on its physical and functional characteristics. EXAMPLE Examples of plant_type include: beverage plant, pharmaceutical plant, power plant, offshore oil facility, commercial ship, and military ship. ## 4.2.259. Plant_csg_shape_representation A Plant_csg_shape_representation is a type of Shape_representation (see **4.2.309**). This requirement is for a "pure csg" shape, and a complex csg will be accomplished using the hybrid representation. ## **4.2.260.** Plant item A Plant_item is an identifiable item that has a shape and that may be used as a component of the Plant (see **4.2.258**). The Plant_item need not be a physical item, but may be an allocation of space reserved for a purpose. Each Plant_item is either: a Plant_item_definition (see **4.2.267**) or a Plant_item_instance (see **4.2.269**). Each Plant_item may be one of the following: a Ducting_component (see **4.2.90**), an Electrical_component (see **4.2.99**), an Equipment (see **4.2.104**), an Hvac_component (see **4.2.145**), an Instrumentation_and_control_component (see **4.2.189**), an Insulation (see **4.2.191**), a Piping_system_component (see **4.2.250**), a Structural_component (see **4.2.335**), or a Support_component (see **4.2.343**). The data associated with a Plant_item are the following: — description; — name; — plant_item_id; — status; — type. ## **4.2.260.1** description The description specifies a textual explanation or summary of the Plant_item. ### 4.2.260.2 name The name specifies a textual label given to the Plant item. ## 4.2.260.3 plant_item_id The plant_item_id specifies a unique identifier for the Plant_item. Plant_item_id is required for each Plant_item. ### 4.2.260.4 status The status specifies the state of the Plant_item within the life cycle of the Plant (see **4.2.258**). ### 4.2.260.5 type The type specifies a designation that classifies a Plant_item based on its physical and functional characteristics. ## 4.2.261. Plant item centreline A Plant_item_centreline is a type of Reference_geometry (see **4.2.295**) that is a centre of symmetry of an aspect of the shape of the Plant_item (see **4.2.260**). ## 4.2.262. Plant_item_collection A Plant_item_collection is an association that indicates that a component Plant_item (see **4.2.260**) is part of an aggregate Plant_item. Each Plant_item_collection may be a Connected_collection (see **4.2.70**). Each Plant_item_collection may be a Hierarchically_organized_collection (see **4.2.141**). EXAMPLE A Plant_item_collection may be defined for a kit, where the members are not connected, or for an assembly, where the members are connected. Collections that are not hierarchically organized may be physical systems where a single component plays a role in multiple systems, such as a gauge. The data associated with a Plant item collection are the following: - location_and_orientation; - usage_type. ### 4.2.262.1 location and orientation The location_and_orientation specifies the relative position and orientation of the Plant_item (see **4.2.260**) within the Plant_item_collection. The location_and_orientation need not be specified for a particular Plant_item_collection. ### 4.2.262.2 usage_type The usage_type specifies the purpose for the association defined by the Plant_item_collection. The usage_type may be one of the following: - BOM: - compound bend pipe; - source identification; - assembly-component. **4.2.262.2.1 BOM**: The value BOM specifies that the Plant_item_collection is being used to collect Plant_items (see **4.2.260**) that represent a bill of materials for the Plant_item identified as the group. **4.2.262.2.2 compound bend pipe**: The value compound bend pipe specifies that the Plant_item_collection is being used to collect Plant_items (see **4.2.260**) that are Pipes (see **4.2.236**) to create a Compound_bend_pipe (see **4.2.65**). If the usage_type is Compound_bend_pipe, the group Plant_item shall be a
Compound_bend_pipe, and the element Plant_items are either Straight_pipe (see **4.2.332**), Swept_bend_pipe (see **4.2.349**), or Mitre_bend_pipe (see **4.2.219**). **4.2.262.2.3 source identification**: The value source identification specifies that the Plant_item_collection is being used to collect different suppliers' source Plant_items (see **4.2.260**) identified by the element for a particular Plant_item identified by the group. **4.2.262.2.4 assembly-component**: The value assembly-component specifies that the Plant_item_collection is being used to collect immediate component Plant_items (see **4.2.260**) in an assembly Plant_item. The group identifies the Plant_item that is the assembly and the element identifies the Plant_item that is the group ## 4.2.263. Plant_item_connection A Plant_item_connection is a linkage between two or more Plant_item_connector (see **4.2.265**) objects. The joining conditions may be specified for the connection. Each Plant_item_connection is either a Connection_definition (see **4.2.72**) or a Plant_item_connection_occurrence (see **4.2.264**). Each Plant_item_connection is either a Flexible_connection (see **4.2.123**) or a Locked_orientation_connection (see **4.2.213**). Each Plant_item_connection may be an Electricity_transference (see **4.2.102**). Each Plant_item_connection may be a Fluid_transference (see **4.2.124**). Each Plant_item_connection may be a Load_transference (see **4.2.209**). Each Plant_item_connection can have many function types, for the purpose of describing the role that the connection plays in the Plant (see **4.2.258**). NOTE 1 In most cases, such as Piping_components (see **4.2.240**), a Plant_item_connection links only two Plant item connector (see **4.2.265**) objects. NOTE 2 The term connection does not imply functional continuity beyond the connectors involved in the connection. The data associated with a Plant_item_connection are the following: | — connection_commitment_target; | |---------------------------------| | — connection_id; | | — description; | | — shop_joint. | ## 4.2.263.1 connection_commitment_target The connection_commitment_target specifies when in the life_cycle phases of the Plant_system (see **4.2.276**) that a connection is actually made. EXAMPLE Examples of connection_commitment_targets include fabrication, field-fit, commissioning, or others. ### **4.2.263.2** connection_id The connection_id specifies a unique identifier for the Plant_item_connection. Connection_id is required for each Plant_item_connection. ## **4.2.263.3** description The description specifies the textual explanation or summary of the function of the Plant item connection. ## 4.2.263.4 shop_joint The shop_joint specifies that the connection is made in the shop. ## 4.2.264. Plant item connection occurrence A Plant_item_connection_occurrence is a type of Plant_item_connection (see **4.2.263**) that involves a physical linkage between two or more Plant_item_connector_occurrence (see **4.2.266**) objects. The data associated with a Plant_item_connection_occurrence are the following: — connection_definition; — field_fit. ## 4.2.264.1 connection_definition The connection_definition specifies the connection_id of the Connection_definition (see **4.2.72**) which specifies the defined characteristics of the Plant_item_connection_occurrence. ## 4.2.264.2 field_fit The field_fit specifies that the Plant_item_connection_occurrence is to be made by adjusting the length of Pipe (see **4.2.236**) to make the connection properly. ## 4.2.265. Plant item connector A Plant_item_connector is a feature of a Plant_item (see **4.2.260**) that is designed to connect to a connector on another Plant_item. Each Plant_item_connector may have specified its design type as one of the following: an Electrical_connector (see **4.2.100**), a Piping_connector (see **4.2.242**), or a Structural_load_connector (see **4.2.336**). Each Plant_item_connector is either a Connector_definition (see **4.2.75**) (a definitional type) or a Plant_item_connector_occurrence (see **4.2.266**) (a specified type). NOTE The definitional type is used as the connector definition for a Plant_item_definition (see **4.2.267**). A specified type is used for a Plant_item instance (see **4.2.269**). The data associated with a Plant_item_connector are the following: — connect_point; — plant_item_connector_id. ## **4.2.265.1** connect_point The connect_point specifies a point on or in the connector where the terminal interface with another connector occurs. ## 4.2.265.2 plant item connector id The plant_item_connector_id specifies a unique identifier for the Plant_item_connector. Plant_item_connector_id is required for each Plant_item_connector. ## 4.2.266. Plant_item_connector_occurrence A Plant_item_connector_occurrence is a type of Plant_item_connector (see **4.2.265**) that is a physical feature of a Plant_item (see **4.2.260**) that connects or mates with a like type of connector on another Plant_item. Each Plant_item_connector_occurrence is either: a Functional_connector (see **4.2.128**) or a Physical_connector (see **4.2.234**). The data associated with a Plant_item_connector_occurrence are the following: - connector_definition; - orientation. ### 4.2.266.1 connector definition The connector_definition specifies the connector_id of the Connector_definition (see **4.2.75**) which specifies the defined characteristics of the Plant_item_connector_occurrence. #### **4.2.266.2** orientation The orientation specifies the relative orientation of the Plant_item_connector_occurrence to a defined point on the Plant_item (see **4.2.260**). ## 4.2.267. Plant_item_definition A Plant_item_definition is a type of Plant_item (see **4.2.260**) that has been designed to some level of completeness, but has not been used as the design for physical Plant_item objects. ## 4.2.268. Plant item design view A Plant_item_design_view is the collection of information about a Plant_item (see **4.2.260**) that is associated with a particular design phase. Each Plant_item_design_view is either: a Functional_design_view (see **4.2.131**) or a Physical_design_view (see **4.2.235**). ## 4.2.269. Plant_item_instance A Plant_item_instance is a planned type of Plant_item (see **4.2.260**), as instanced in a spatial, functional or other design. Each Plant_item_instance is either a Planned_physical_plant_item (see **4.2.257**) or a Plant_volume (see **4.2.278**). NOTE A Plant_item_instance is created through the use or instancing of a Plant_item_definition (see **4.2.267**) by placing it in a design. ## 4.2.270. Plant item interference A Plant_item_interference is where the spatial volume occupied by a Plant_item (see **4.2.260**) overlaps the space occupied by one or more Plant_item objects. ## 4.2.270.1 interference_id The interference_id specifies an identifier for the Plant_item_interference. ## 4.2.270.2 type The type specifies the classification assigned to the Plant_item_interference based on the criticality of the clash. NOTE The criticality is an assessment of the importance or significance of the clash for a particular project. The values are project dependent. ## 4.2.271. Plant_item_interference_status A Plant_item_interference_status is a designation indicating the state of resolution of an identified interference. The data associated with a Plant item interference status are the following: | — assessor; | | |----------------|--| | — first_item; | | | — second_item; | | | — status. | | #### 4.2.271.1 assessor The assessor specifies the individual or organization assigned the responsibility for resolving the Plant item interference (see **4.2.270**). ## 4.2.271.2 first_item The first_item specifies the plant_item_id of one of the Plant_items (see **4.2.260**) that is interfering. ### 4.2.271.3 second item The second_item specifies the plant_item_id of one of the Plant_items (see **4.2.260**) that is interfering. ### 4.2.271.4 status The status specifies a designation indicating the state of resolution of an identified Plant_item_interference (see **4.2.270**). ## 4.2.272. Plant item location A Plant_item_location is the position of the Plant_item (see **4.2.260**) within a Plant (see **4.2.258**). The position of a Plant_item is specified as the transformation (translation and rotation) of a point and axes on the Plant_item to a point and axes in the destination coordinate system. Each Plant_item_location is either a Location_in_building (see **4.2.210**), a Location_in_plant (see **4.2.211**), a Location_in_site (see **4.2.212**), or a Relative_item_location (see **4.2.298**). The data associated with a Plant_item_location are the following: - location_and_orientation; - location id. ## 4.2.272.1 location and orientation The location_and_orientation specifies the relative position and orientation of the Plant_item (see **4.2.260**) within the Plant (see **4.2.258**). ## 4.2.272.2 location_id The location id specifies a unique identifier for the Plant item location. ## 4.2.273. Plant_item_shape A Plant_item_shape is the volumetric representation of a Plant_item (see **4.2.260**). Each Plant_item_shape may be one of the following: a Detail_shape (see **4.2.88**), an Envelope_shape (see **4.2.103**), or an Outline_shape (see **4.2.228**). The z-axis of the local coordinate system of the Plant item shape shall be considered the elevation of the coordinate space. The data associated with a Plant_item_shape are the following: - clash_detection_class; - origin. ## 4.2.273.1 clash_detection_class The clash_detection_class specifies a designation that classifies a Plant_item_shape for the purposes of interference checking. The value of the clash_detection_class attribute shall be one of the following: — hard; — ignore; © ISO 2001 — All rights reserved — soft. - **4.2.273.1.1 hard:** the Plant_item_shape is used for clash detection and indicates that the shape cannot occupy the same physical space with another hard shape. - **4.2.273.1.2
ignore:** the Plant_item_shape is not used for clash detection. - **4.2.273.1.3 soft:** the Plant_item_shape is used for clash detection and indicates that the shape can occupy the same space with another soft shape and, depending on the circumstances, may occupy the same space as a hard object. NOTE See Table 1. Table 1 represents a comparison between the clash_detection_class designations for two Plant_item_shapes and indicates whether the resulting interference would be designated as hard clash, soft clash, or no clash. A hard clash refers to an interference between two Plant_item_shapes whose clash_detection_class is hard. A soft clash refers to an interference between two Plant_item_shapes where at least one of the Plant_item_shapes has a clash_detection_class of soft. A no clash refers to an interference between two Plant_item_shapes where at least one of the Plant_item_shapes has a clash_detection_class of ignore. Table 1 — Plant_item_shape interference clash detection | | Hard | Ignore | Soft | |--------|------------|----------|------------| | Hard | hard clash | no clash | soft clash | | Ignore | no clash | no clash | no clash | | Soft | soft clash | no clash | soft clash | ### 4.2.273.2 origin The origin specifies the locating point for the geometric shape of a Plant_item (see 4.2.260). ## 4.2.274. Plant_item_weight A Plant_item_weight is an estimate or the measure of the force experienced by the Plant_item (see **4.2.260**) as a result of the earth's gravity. NOTE Before the Plant_item (see **4.2.260**) actually exists, weight is simply an estimate. The actual weight may be provided if the Plant_item does exist and has been measured. The data associated with a Plant_item_weight are the following: | — centre_c | of_gravity; | |------------|-------------| | — weight_ | state; | | — weight | value. | #### 4.2.274.1 centre_of_gravity The centre of gravity specifies the point where the entire weight of a Plant item (see 4.2.260) may be considered as concentrated so that if supported at this point the Plant item would remain in equilibrium in any position. ### **4.2.274.2** weight_state The weight state specifies a designation of the condition of the Plant item (see 4.2.260) that corresponds to the Plant item weight. NOTE The value of the weight_state may be one of a set of predefined values or may be user supplied. The value of the weight state attribute may be one of the following: — empty; - full; — operating; - shipping; — test; — weight value. **4.2.274.2.1 empty:** the Plant item (see **4.2.260**) does not contain any process materials. **4.2.274.2.2 full:** the Plant item (see **4.2.260**) contains maximum amount of process materials. **4.2.274.2.3 operating:** the Plant_item (see **4.2.260**) is in normal operating conditions. **4.2.274.2.4 shipping:** the Plant_item (see **4.2.260**) and its transportation and packing materials are included. **4.2.274.2.5** test: the Plant item (see **4.2.260**) is for purposes of structural load calculations. ### 4.2.274.3 weight value The weight_value specifies a measure of the force experienced by the Plant_item (see 4.2.260) as a result of the earth's gravity. #### 4.2.275. Plant process capability A Plant_process_capability is a functional behaviour that can be executed by the Plant (see 4.2.258). The data associated with a Plant process capability are the following: — production_capacity; — production_type. EXAMPLE A Plant (see **4.2.258**) with a production_type of POWER may produce power at a production_capacity of 500 million kilowatts per hour. If this process capability is provided by a combination of a Piping_system (see **4.2.249**) (for steam, for example) and an Electrical_system (see **4.2.101**), both of these systems can be combined as a subplant; the subplant has the process capability and is part of a plant. ### 4.2.275.1 production_capacity The production_capacity specifies the rated output of the Plant (see **4.2.258**) with respect to a Plant_process_capability. #### 4.2.275.2 production type The production_type specifies a designation that classifies the Plant (see **4.2.258**) based on the products it produces. ## **4.2.276.** Plant system A Plant_system is a combination of Plant_item (see **4.2.260**) objects that perform a function required for the Plant (see **4.2.258**) to operate to produce products. Each Plant_system may be one of the following: an Electrical_system (see **4.2.101**), a Ducting_system (see **4.2.91**), an Instrumentation_and_control_system (see **4.2.190**), a Piping_system (see **4.2.249**), or a Structural_system (see **4.2.337**). The data associated with a Plant_system are the following: | — name; | |-------------------------------| | <pre>— plant_system_id;</pre> | | — service_description; | | — approval_state. | #### 4.2.276.1 name The name specifies a textual label given to the Plant_system. #### **4.2.276.2** plant system id The plant_system_id specifies a unique identifier for the Plant_system. Plant_system_id is required for each Plant_system. ## 4.2.276.3 service_description The service_description specifies a textual or summary label for the system. EXAMPLE Examples of service_description labels include Boiler Feedwater System, Paraxylene System, Pipe Rack K, and 4160V Power System. #### 4.2.276.4 approval_state The approval_state indicates the current status of the system. ## 4.2.277. Plant_system_assembly A Plant_system_assembly is a collection of Plant_system (see **4.2.276**) objects into a higher-level system to perform a functional capability. The data associated with a Plant_system_assembly are the following: - subsystem; - supersystem. ### 4.2.277.1 subsystem The subsystem specifies the plant_id and plant_system_id of the Plant_system (see **4.2.276**) that is the component system in the Plant_system_assembly. ### **4.2.277.2** supersystem The supersystem specifies the plant_id and plant_system_id of the Plant_system (see **4.2.276**) that is the assembly system in the Plant_system_assembly. ## **4.2.278. Plant volume** A Plant_volume is a type of Plant_item_instance (see **4.2.269**) that is a specifically defined volume located within a Plant (see **4.2.258**) that may, but need not be occupied by physical Plant_item (see **4.2.260**) objects. Each Plant_volume may be one of the following: a Reserved_space (see **4.2.300**), a Route (see **4.2.302**), or a System space (see **4.2.350**). The data associated with a Plant_volume are the following: — type. The type specifies a designation that classifies the Plant volume. EXAMPLE Examples of Plant_volume object type classifications include reserved space, zone-area, area classification zone, equipment pull space, and egress for personnel. ### **4.2.279.** Plate A Plate is a type of Pipe_closure (see **4.2.237**) that consists of a flat piece that is welded on the end of the Pipe (see **4.2.236**). NOTE Figure 50 depicts a typical Plate. Figure 50 - Plate The data associated with a Plate are the following: — thickness. The thickness is the distance between the parallel faces of the Plate. ## 4.2.280. Plug A Plug is a type of Pipe_closure (see **4.2.237**) that closes off the end of a Pipe (see **4.2.236**) by fitting within the inside wall of the Pipe. NOTE Figure 51 depicts a typical Plug. Figure 51 - Plug The data associated with a Plug are the following: -height. The height specifies the axial length of Plug. #### 4.2.281. Point A Point is a type of Wire_and_surface_element (see **4.2.372**) that is a dimensionless location in space. ## 4.2.282. Point_and_line_representation A Point_and_line_representation is a type of Site_shape_representation (see **4.2.315**) represented as a collection of Point (see **4.2.281**) objects that define the surface grid of the topography of a Site (see **4.2.313**). ## **4.2.283.** Polygon A Polygon is a type of Curve (see **4.2.85**) that is composed of a set of points connected by line segments that form a planar, closed, non-self-intersecting figure. ## 4.2.284. Pressure_class A Pressure_class is a type of Piping_size_description (see **4.2.244**) based on pressure rating or classification and a nominal size value. NOTE This type of Piping_size_description (see **4.2.244**) is commonly associated with a dimensional specification, such as the ANSI B16.5 specification for Flange objects. The data associated with a Pressure_class are the following: - nominal_size; - pressure rating. #### 4.2.284.1 nominal size The nominal_size specifies a standard size designation of the Piping_system_component (see **4.2.250**) or Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE 1 The nominal size need not represent an actual dimension. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.284.2 pressure_rating The pressure_rating specifies a nominal pressure for the design of the Piping_system_component (see **4.2.250**) or Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE 1 When specified with a dimensional standard, such as ANSI B16.1, its value corresponds to a selection out of a set of available values (e.g., 150 PSI, 300 PSI). NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## **4.2.285. Pressure_fit** A Pressure_fit is a type of Piping_connector (see **4.2.242**) that is a physical feature of a Plant_item (see **4.2.260**) that intended to establish a connection with another connector through pressure between the connector rather than by means of threading, welds, or fasteners. ## 4.2.286. Process_ducting A Process_ducting is a type of Ducting_component (see **4.2.90**) and Piping_system_component (see **4.2.250**) that consists of Piping_component (see **4.2.240**) objects or ductwork that is used to convey process streams in a Plant (see **4.2.258**). NOTE Process_ducting is used for
venting gaseous portions of the process stream. It is part of the system that handles the process stream, but is ductwork rather than piping. The data associated with a Process_ducting are the following: — gauge. The gauge specifies a designation that refers to the thickness of the Process_ducting. ## 4.2.287. Project design assignment A Project_design_assignment is an assignment of a Plant_item (see **4.2.260**) to a Design_project (see **4.2.87**). NOTE The set of Project_design_assignment instances for a project defines the items and areas that are part of the project. ## **4.2.288.** Pyramid A Pyramid is a type of Csg_element (see **4.2.84**) that is a 3D volume with a rectangular base and four triangular sides that meet at an apex. The axis of a Pyramid is the line segment from the centre of the base to the apex. # **4.2.289.** Raceway A Raceway is a type of Cableway_piece (see **4.2.22**) that has a rectangular cross section and contains one or more channels for holding cables. EXAMPLE Surface raceway, ladder-type raceway. ## 4.2.290. Raceway_lane A Raceway_lane is a type of Cableway_component (see **4.2.19**) that is a channel within a Raceway (see **4.2.289**) for holding cables. # 4.2.291. Raceway_size_description A Raceway_size_description is a type of Cableway_size_description (see **4.2.23**) that is used to explain or summarize the physical size of a Raceway (see **4.2.289**) based on a set of dimensional characteristics. The data associated with a Raceway_size_description are the following: outer_width;outer_height; — inner_width; — inner_height. ### 4.2.291.1 outer_width The outer_width is the horizontal measurement of the outer surface of a Raceway (see **4.2.289**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## **4.2.291.2** outer_height The outer_height is the vertical measurement of the outer surface of a Raceway (see **4.2.289**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.291.3 inner_width The inner_width is the horizontal measurement of the inner surface of a Raceway (see **4.2.289**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.291.4 inner height The inner_height is the vertical measurement of the inner surface of a Raceway (see **4.2.289**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### **4.2.292.** Reducer A Reducer is a type of Fitting (see **4.2.118**) that provides a reduction from one Pipe (see **4.2.236**) size to another. Each Reducer may be an Eccentric_reducer (see **4.2.97**). NOTE Figure 52 depicts a typical butt-weld Reducer. Figure 52 - Reducer The data associated with a Reducer are the following: - end_1_connector; - end_2_connector; - end_to_end_length. #### 4.2.292.1 end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) that connects to the larger size Pipe (see **4.2.236**). ## 4.2.292.2 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) that connects to the smaller size Pipe (see **4.2.236**). #### 4.2.292.3 end_to_end_length The end_to_end_length specifies the external distance between the end-one face and the end-two face of the Reducer. It may be specified as a single value or as a range of values. NOTE 1 See annex L for a discussion of attributes that may be assigned a single value or a range of values. NOTE 2 Swage is a synonym for Reducer which is normally used for smaller sizes. # 4.2.293. Reducing_flange A Reducing_flange is a type of Flange (see **4.2.119**) used to make a Flanged (see **4.2.120**) joint between Pipe (see **4.2.236**) objects of different nominal sizes that has the dimensional characteristics of the larger Pipe and the bore of the smaller Pipe. EXAMPLE Examples of Reducing_flange types include Weld_neck_flange (see **4.2.370**), Slip_on_flange (see **4.2.317**), Socket_weld_flange (see **4.2.320**), and Threaded_flange (see **4.2.353**). NOTE Figure 53 depicts a typical Reducing_flange. Figure 53 - Reducing_flange The data associated with a Reducing_flange are the following: — stand_off. The stand_off specifies the measure of the distance between the face of the Reducing_flange and the end of the Pipe (see **4.2.236**) that is inserted into the Reducing_flange. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.294. Reducing_torus A Reducing_torus is a type of Csg_element (see **4.2.84**) that is formed by sweeping a circle that uniformly decreases in size through a circular sweep angle of less that 360 degrees. # 4.2.295. Reference_geometry A Reference_geometry is the identification of one or more Shape_representation_element (see **4.2.310**) objects in a model that are not part of a component shape, but provide additional geometric information relative to the shape of the Plant_item (see **4.2.260**). Each Reference_geometry may be a Plant_item_centreline (see **4.2.261**). The data associated with a Reference_geometry are the following: — name. The name specifies a textual label given to the Reference geometry. # 4.2.296. Reinforcing_component A Reinforcing_component is a type of Piping_component (see **4.2.240**) which is used to strengthen the Piping_spool (see **4.2.246**). The data associated with a Reinforcing_component are the following: - end 1 connector; - location_point; - orientation. #### 4.2.296.1 end 1 connector The end_1_connector specifies the Piping_connector (see **4.2.242**) on the Reinforcing_component to the pipe. ### **4.2.296.2 location_point** The location_point is a standard point on Piping_component (see **4.2.240**) at which the Reinforcing_component is attached. #### **4.2.296.3** orientation The orientation specifies a unit vector in the direction perpendicular to the centreline of the run pipe. The vector defines the layout of the Reinforcing_component. ## 4.2.296.4 reinforcing component types Necessary information for piping shop fabrication: type, location point, orientation and dimensional parameters. Types of Reinforcing_components include: Gusset (see **4.2.138**), Reinforcing_plate (see **4.2.297**), and Stay (see **4.2.330**). # 4.2.297. Reinforcing_plate A Reinforcing_plate is a type of Reinforcing_component (see **4.2.296**) that is made of plate that has a hole at its centre. It is firmly attached to run pipe and branch pipe to prevent the welded part between the branch pipe and the run pipe from breaking. NOTE Figure 54 depicts a typical Reinforcing_plate. Figure 54 - Reinforcing_plate The data associated with a Reinforcing_plate are the following: - thickness. The thickness is the distance of the top face of the Reinforcing_plate from the surface of the run pipe. ## 4.2.298. Relative_item_location A Relative_item_location is a type of Plant_item_location (see **4.2.272**) that is the relative position of the Plant_item (see **4.2.260**) with respect to another Plant_item. ## 4.2.299. Required_material_description A Required_material_description is a specification of the substances or the requirements of the substances that a component is to be made from. The data associated with a Required material description are the following: - description; - material_requirement_id. ### **4.2.299.1 description** The description specifies a textual explanation or summary of the required materials. #### 4.2.299.2 material requirement id The material_requirement_id specifies a unique identifier for the specification that provides the required material. Material_requirement_id is required for each Required_material_description. NOTE The identifier is normally a coded value that is company-specific. ## 4.2.300. Reserved_space A Reserved_space is a type of Plant_volume (see **4.2.278**) that is a region of space that is not to be obstructed by physical objects for reasons related to plant operation. NOTE Reserved_spaces are normally prescriptive. EXAMPLE Reserved_spaces include maintenance volume, operator access, and safety zone. # 4.2.301. Ring_spacer A Ring_spacer is a type of Spacer (see **4.2.322**) that fits between Flange (see **4.2.119**) objects in a Flanged (see **4.2.120**) joint to bridge a large gap or fill a slight angle between the Flange objects that cannot be accommodated by standard Flange gaskets. NOTE Figure 55 depicts a typical Ring spacer. Figure 55 - Ring_spacer The data associated with a Ring_spacer are the following: - inside_diameter. The inside_diameter specifies the diameter of the bore hole through the Ring_spacer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### **4.2.302.** Route A Route is a type of Plant_volume (see **4.2.278**) that is a 3D path from one location to another. NOTE 1 A Route is a conceptual engineered path that reserves space for a Piping_system (see **4.2.249**). This space need not be occupied by a Plant item (see **4.2.260**) at a future time. NOTE 2 The shape of the reserved volume of a Route is a specified Plant_item_shape (see **4.2.273**). EXAMPLE A cable trench is a kind of Route that goes through and runs underneath the surface of a Site (see **4.2.313**). ### **4.2.303.** Schedule A Schedule is a type of Piping_size_description (see **4.2.244**) that gives the Pipe (see **4.2.236**) or Piping_component (see **4.2.240**) size in terms of nominal size and a sizing schedule. NOTE When a Schedule entity is used, the dimensional standard
attribute of Piping_size_description (see **4.2.244**) must be specified. The data associated with a Schedule are the following: - nominal_size; - pipe_schedule. #### **4.2.303.1** nominal_size The nominal_size specifies a standard size designation of the Piping_system_component (see **4.2.250**) or Piping_connector (see **4.2.242**). It may be specified as a single value or as a range of values. NOTE 1 The nominal size need not represent an actual dimension. NOTE 2 See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### **4.2.303.2** pipe schedule The pipe_schedule specifies a designation of a standard wall thickness and external diameter for a nominal pipe size through a reference to the dimensional standard. ## 4.2.304. Segment_insulation A Segment_insulation is a logical connection between a Piping_system_line_segment (see **4.2.252**) and the Insulation (see **4.2.191**) attached to the Pipe (see **4.2.236**) associated with the Piping_system_line_segment. The data associated with a Segment_insulation are the following: | — boundaries; | |----------------| | — description; | | — line_number; | | — thickness; | | — type. | #### **4.2.304.1** boundaries The boundaries specifies a description that defines the boundaries for Insulation (see **4.2.191**) on the Piping_system_line (see **4.2.251**). EXAMPLE An example description for the Insulation (see **4.2.191**) boundaries of a Piping_system_line (see **4.2.251**) is personnel protection insulation shall extend to 12 feet above grade or walkway. ## **4.2.304.2** description The description specifies a textual explanation or summary of the reasons for providing Insulation (see **4.2.191**). EXAMPLE Examples of Piping_system_line (see **4.2.251**) Insulation (see **4.2.191**) descriptions include provided for heat conservation and provided for personnel protection. #### 4.2.304.3 line number The line_number specifies an alphanumeric identifier assigned to the Piping_system_line (see **4.2.251**) and can be used to uniquely define the Piping_system_line. Line_number is required for each Piping_system_line. ### ISO/CD 10303-227 4.2.304.4 thickness The thickness specifies the distance between the inside and outside surfaces of the Insulation (see **4.2.191**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. The thickness of the insulation may vary over the extent of the insulation. #### 4.2.304.5 type The type specifies the Insulation (see **4.2.191**) material. ## 4.2.305. Service_operating_case A Service_operating_case is a stream condition that may exist at a Plant_item_connector (see **4.2.265**). EXAMPLE Examples of Service_operating_case conditions include normal, upset, and shutdown. The data associated with a Service_operating_case are the following: | — duration; | |--------------------------| | — frequency; | | — name; | | — operating_pressure; | | — operating_temperature. | #### 4.2.305.1 duration The duration specifies the expected time span of the Service_operating_case. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.305.2 frequency The frequency specifies the expected number of times that the Service_operating_case will occur over a defined period of time. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.305.3 name The name specifies a textual label given to the condition that the Equipment (see **4.2.104**) operating characteristics are being defined under. ## 4.2.305.4 operating_pressure The operating_pressure specifies the force per unit area exerted by the process stream on the Plant_item (see **4.2.260**) under a specific Service_operating_case. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.305.5 operating_temperature The operating_temperature specifies the temperature of the process stream on the Plant_item (see **4.2.260**) under a specific Service_operating_case. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.306. Shape_inspection_record A Shape_inspection_record is a collection of information that captures the result of an evaluation of an observed value for a characteristic of the shape of a Piping_spool (see **4.2.246**) against an expected, designed or prescribed value for that characteristic, as well as information to evaluate the acceptability of the observed value. The data associated with a Shape_inspection_record are the following: - shape_inspection_property_name; - shape_inspection_property_sequence_number; - inspected_property_tolerance; - inspected_property_measured_value. #### 4.2.306.1 shape_inspection_property_name The shape_inspection_property_name specifies the characteristic for which information is being recorded. The shape_inspection_property_name may be one of the following: - point to point length; - point to point angle; - planarity; - attached element location; - attached element orientation. ### 4.2.306.2 shape inspection property sequence number The shape_inspection_property_sequence_number specifies an alphanumeric string that identifies the node point that defines the shape property that is being measured. There may be more than one shape_inspection_property_sequence_number for a Shape_inspection_record. NOTE The method of identification is outside the scope of this part of ISO 10303. #### 4.2.306.3 inspected property tolerance The inspected_property_tolerance specifies the acceptable deviation for the measured result of the inspection. ### 4.2.306.4 inspected_property_measured_value The inspected_property_measured_value specifies the recorded result of the inspection. ## 4.2.307. Shape_interference_zone_usage A Shape_interference_zone_usage is the representational elements that define the shape of a volume that encloses the region of space where the interference of clashing Plant_items (see **4.2.260**) occurs. The data associated with a Shape_interference_zone_usage are the following — first_item; — second_item. #### 4.2.307.1 first_item The first_item specifies the plant_item_id of one of the Plant_items (see **4.2.260**) that is interfering. #### **4.2.307.2** second_item The second_item specifies the plant_item_id of one of the Plant_items (see **4.2.260**) that is interfering. ## 4.2.308. Shape_parameter A Shape_parameter is a type of Shape_representation_element (see **4.2.310**) that is a name-value pair that specifies the dimensional value of some aspect of the Plant_item_shape (see **4.2.273**). The meaning of the name-value pair is not specified in this part of ISO 10303. NOTE 1 A use of this structure is to provide a generic capability to reference classes of Plant_items (see **4.2.260**) by a dimensional characteristic, such as 5 centimeter pipe. NOTE 2 It was not the intent of this object to use this structure to create a geometric representation of an item. The effective use of this structure requires an agreement between the exchanging parties as to the meanings of the names so that they can understand the information being exchanged. | The data associated | with a Shape_ | _parameter | are the | following: | |---------------------|---------------|------------|---------|------------| | | | | | | name;value. ### 4.2.308.1 name The name specifies a textual label given to a dimension or parameter of a Plant_item_shape (see **4.2.273**). EXAMPLE An example of this is the name "diameter". #### 4.2.308.2 value The value specifies a number that represents the measure of the dimension or parameter of the Plant_item_shape (see **4.2.273**). EXAMPLE An example of this is the value "5.6". # 4.2.309. Shape_representation A Shape_representation is a combination of geometric elements that describe or define the general or specific surface boundaries of a Plant_item (see **4.2.260**). Shape_representation is either a Hybrid_shape_representation (see **4.2.181**)or Plant_csg_shape_representation (see **4.2.259**). NOTE Shape representation need not be the exact or specific shape of the item. ## 4.2.310. Shape_representation_element A Shape_representation_element is a geometric model that is used to represent the shape or some aspect of the shape of a Plant_item (see **4.2.260**). Each Shape_representation_element is either a B_rep_element (see **4.2.2**), a Csg_element (see **4.2.84**), a Shape_parameter (see **4.2.308**), or a Wire_and_surface_element (see **4.2.372**). ## 4.2.311. Shape representation element usage A Shape_representation_element_usage is an assignment of a Shape_representation_element (see **4.2.310**) to a Shape_representation (see **4.2.309**) of a Plant_item (see **4.2.260**). NOTE Shape_representation_element_usage is the mechanism that aggregates the geometric elements that represent the shape of the Plant_item (see **4.2.260**). The rules are constraints for what constitutes a valid aggregation are delineated by conformance class. — layer. #### 4.2.311.1 element_colour The element colour specifies the colour that displays the element. #### 4.2.311.2 layer The layer specifies the collection of displayable items for the purpose of controlling visibility and presentation style. ### 4.2.312. Shoe A Shoe is a type of Piping_support (see **4.2.248**) that is composed of Plates (see **4.2.279**), and which has a cross-sectional shape that resembles a reversed "T" or reversed PI. The Shoe supports the weight rigidly at its base, and is used to regulate the movement or to fix the position of pipe. NOTE Figure 56
depicts a typical Shoe. Figure 56 - Shoe The data associated with a Shoe are the following: — height. The height is the distance between the supporting face of the base plate of the Shoe and location_point. ### 4.2.313. Site A Site is a geographical location where the Plant (see **4.2.258**) is located. The z-axis of the local coordinate system of the Site shall be considered the elevation of the coordinate space. The data associated with a Site are the following: | — | address; | |---|---------------------------| | | coordinates; | | | elevation; | | | environmental_references; | | | locality; | | — name; | | | |----------------|--|--| | — orientation; | | | | — owners; | | | | — site_id. | | | #### 4.2.313.1 address The address specifies the street address (including city, state, and zip code as appropriate) of the Site. #### **4.2.313.2** coordinates The coordinates specifies the longitude and latitude coordinates of the Site with respect to a known Point (see **4.2.281**) on the Site. #### **4.2.313.3** elevation The elevation specifies the distance that the Site is located above sea level with respect to a known Point (see **4.2.281**) on the Site. NOTE The Point (see 4.2.281) referenced here is the same point referenced under coordinates. #### 4.2.313.4 environmental_references The environmental_references specifies a reference to a Document (see **4.2.89**) that provides environmental information relevant to the Site. EXAMPLE Environmental_references specify Documents (see **4.2.89**) that describe the conditions of the environment that a Plant (see **4.2.258**) operates in that affect the design, such as snow loads, wind loads, and seismic data. ## 4.2.313.5 locality The locality specifies the municipality or region where the Site is located. #### 4.2.313.6 name The name specifies a textual label given to the Site. #### **4.2.313.7** orientation The orientation specifies the relative alignment of the Site with respect to a given compass direction. #### 4.2.313.8 owners The owners specify the company or organization that is financially responsible the Site. #### 4.2.313.9 site_id The site_id specifies a unique identifier for the Site. Site_id is required for each Site. ## **4.2.314.** Site feature A Site_feature is the composition, proportions, form, or outward appearance of some thing of interest on a Site (see **4.2.313**). EXAMPLE A Site_feature may be man-made, such as a building, road, railway, water tower or they may be natural, such as a river, hill, or forest. The data associated with a Site_feature are the following: |
· location_and_orientation; | |---------------------------------| |
man_made_or_natural; | |
shape; | |
site_feature_id; | |
type. | #### 4.2.314.1 location and orientation The location_and_orientation specifies the position of the Site_feature relative to the Site (see **4.2.313**) coordinate system and the orientation of the Site feature relative to a specified direction. #### 4.2.314.2 man_made_or_natural The man_made_or_natural specifies that the Site_feature is either man-made or natural, and provides a short descriptive name or title of the feature. ### 4.2.314.3 shape The shape specifies a 3D spatial volume that completely encloses or bounds a feature. NOTE The shape of the Site_feature is necessary for the spatial layout of buildings and the piping between buildings. #### 4.2.314.4 site_feature_id The site_feature_id specifies a unique identifier for the Site_feature. #### 4.2.314.5 type The type specifies a designation that classifies a Site_feature based on its physical and functional characteristics. # 4.2.315. Site_shape_representation A Site_shape_representation is a replica of the topography of a specific area. Each Site_shape_representation is either a Faceted_surface_representation (see **4.2.114**) or a Point and line representation (see **4.2.282**). ## **4.2.316.** Sited_plant A Sited_plant is a Planned_physical_plant (see **4.2.256**) that a Site (see **4.2.313**) location has been defined for. The data associated with a Sited_plant are the following: - plant_site_location; - plant_site_orientation. ### 4.2.316.1 plant_site_location The plant_site_location specifies the geographic position of the Plant (see **4.2.258**) relative to the Site (see **4.2.313**) or a feature of the Site. ## 4.2.316.2 plant_site_orientation The plant_site_orientation specifies the directional orientation of the Plant (see **4.2.258**) with respect to the Site (see **4.2.313**). ## 4.2.317. Slip_on_flange A Slip_on_flange is a type of Flange (see **4.2.119**) that slips over the end of a Pipe (see **4.2.236**) or Fitting (see **4.2.118**) and is fillet welded in place. NOTE Figure 57 depicts a typical Slip_on_flange. Figure 57 - Slip_on_flange The data associated with a Slip_on_flange are the following: — stand off. The stand_off specifies the measure of the distance between the face of the Slip_on_flange and the end of the Pipe (see **4.2.236**) or the Fitting (see **4.2.118**) that is inserted into the Slip_on_flange. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.318. Slip_on_jacket_flange A Slip_on_jacket_flange is a type of Slip_on_flange (see **4.2.317**) that slips over the end of a jacketed Piping_spool (see **4.2.246**), and closes off the jacket. NOTE Figure 58 depicts a typical Slip_on_jacket_flange. Figure 58 - Slip_on_jacket_flange The data associated with a Slip_on_jacket_flange are the following: — end_3_connector. The end_3_connector specifies the Piping_ connector (see **4.2.242**) where the outside Pipe (see **4.2.236**) of the jacketed piping connects to the Flange (see **4.2.119**). ## 4.2.319. Socket A Socket is a type of Piping_connector (see **4.2.242**) that is a physical feature of a Plant_item (see **4.2.260**) that allows partial insertion of the Male_end (see **4.2.215**) of another Plant_item. NOTE 1 The location of the connect point should be based on the dimension from the centreline to the bottom of the Socket of a Valve (see **4.2.367**) or Fitting (see **4.2.118**) plus the set_back. NOTE 2 Figure 59 depicts a typical Socket. Figure 59 - Socket The data associated with a Socket are the following: - set_back. The set_back specifies the distance between the end of the Piping_component (see **4.2.240**) and the bottom of the Socket. NOTE The attribute for set_back will only be used when the Piping_component (see **4.2.240**) participates in a connection. # 4.2.320. Socket_weld_flange A Socket_weld_flange is a type of Flange (see **4.2.119**) having a Socket (see **4.2.319**) configuration that fits the end of a Pipe (see **4.2.236**) for fillet welding. NOTE Figure 60 depicts a typical Socket_weld_flange. Figure 60 - Socket_weld_flange ## 4.2.321. Solid of revolution A Solid_of_revolution is a type of Csg_element (see **4.2.84**) that is formed by sweeping a 2D shape about an axis. The 2D shape may be closed or open; if open, then the ends of the 2D shape must lie on the sweep axis. ## 4.2.322. Spacer A Spacer is a type of Fitting (see **4.2.118**) that is placed between two Flange (see **4.2.119**) objects to enable the flow of material between the pipelines on either side of the Spacer. Each Spacer may be one of the following: a Paddle_spacer (see **4.2.231**), or a Ring_spacer (see **4.2.301**). The data associated with a Spacer are the following: - outside_diameter; - thickness. ### 4.2.322.1 outside_diameter The outside_diameter specifies the external diameter of the Spacer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### **4.2.322.2** thickness The thickness specifies the distance between the two parallel faces of the Spacer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.323. Spare_plant_item_usage A Spare_plant_item_usage is an association between a primary Plant_item (see **4.2.260**) and a Plant_item used as a spare for the primary Plant_item. # 4.2.324. Specialty_item A Specialty_item is a type of Piping_system_component (see **4.2.250**) whose specific dimensional design or configuration is not met by some standard commodity item. The data associated with a Specialty_item are the following: — type. The type specifies a category that the item is part of. EXAMPLE Examples of Specialty_item types include Flange (see 4.2.119) and Valve (see 4.2.367). ## 4.2.325. Spectacle_blind A Spectacle_blind is a type of Blank (see **4.2.5**) that consists of two paddles connected by an arm. One paddle blocks the flow of material (see Paddle_blank in **4.2.230**) and the other is a ring that permits or alters the flow (see Paddle_spacer in **4.2.231**). A spectacle either allows or disallows flow in a pipe depending on which end of the spectacle is installed in line. It is often used to isolate a section of the Piping_system (see **4.2.249**) or Equipment (see **4.2.104**). NOTE 1 The term spectacle refers to shape of the item, that resembles a pair of spectacles (i.e., reading glasses). NOTE 2 Figure 61 depicts a typical Spectacle_blind. Figure 61 - Spectacle_blind The data associated with a Spectacle_blind are the following: - arm width; - centre_to_centre; - inside ring diameter. ## 4.2.325.1 arm_width The arm_width specifies the width of the arm connecting the paddles. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.325.2 centre_to_centre The centre_to_centre specifies the distance between the geometric centres of the paddles. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of
attributes that may be assigned a single value or a range of values. #### 4.2.325.3 inside_ring_diameter The inside_ring_diameter specifies the diameter of the bore hole through the ring paddle. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## **4.2.326.** Sphere A Sphere is a type of Csg_element (see **4.2.84**) that is a solid bounded by a surface at a constant radius from a centre point. ## 4.2.327. Splitter A Splitter is a vane which is placed inside an Hvac_fitting (see **4.2.157**) for the purpose of directing flow. The data associated with a Splitter are the following: - splitter_id; - splitter radius; - splitter_radius_centre_offset; - straight_portion_length. ### 4.2.327.1 splitter_id This attribute specifies a unique identifier for the Splitter. ### 4.2.327.2 splitter_radius This attribute specifies the radius of the Splitter. ### 4.2.327.3 splitter_radius_centre_offset This attribute specifies the vertical distance from the throat centre to the Splitter centre. #### 4.2.327.4 straight_portion_length This attribute specifies the length of the straight portion of the Splitter. ## 4.2.328. Spring washer A Spring_washer is a type of Washer (see **4.2.369**). The Spring_washer has one radial cut and both ends are pulled to opposite directions, and is furnished with the function of a coil spring. The data associated with a Spring washer are the following - thickness; - outside_diameter. #### 4.2.328.1 thickness The thickness specifies the distance between two faces of the material plate of the Spring_washer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.328.2 outside_diameter The outside_diameter specifies the external diameter of the Spring_washer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.329. Square_to_round A Square_to_round is a type of Csg_element (see **4.2.84**) that consists of a planar, rectangular surface, a planar circular surface parallel to the rectangular surface, and an enclosing, transitional surface that connects the boundaries of the rectangular surface and circular surface. ## 4.2.330. Stay A Stay is a type of Reinforcing_component (see **4.2.296**) that is a tensile member placed between a run pipe and a branch pipe that are arranged in parallel. The Stay prevents the branch pipe from breaking or deforming. NOTE Figure 62 depicts a typical Stay. Figure 62 - Stay The data associated with a Stay are the following: — height. The height is the distance between the location_point and the centreline of the branch pipe that is reinforced by the Stay. ## 4.2.331. **Stopper** A Stopper is a type of Piping_support (see **4.2.248**) that consists of a plate perpendicularly fixed to the pipe axis and one or more strengthening plates for the perpendicular plate. The Stopper is used to prevent the pipe from moving. NOTE Figure 63 depicts a typical Stopper. Figure 63 - Stopper The data associated with a Stopper are the following: — length. The length is the distance between the outer face of the Stopper and the location_point. ## 4.2.332. Straight_pipe A Straight_pipe is a type of Pipe (see **4.2.236**) that does not change the direction of fluid flow. The data associated with a Straight pipe are the following: - end_to_end_cut_length; - end_to_end_length. ## 4.2.332.1 end_to_end_cut_length The end_to_end_cut_length is the length of the Straight_pipe for shop fabrication that takes into account extra length required for installation variations and the subtracted length for the difference between designed length and shop fabricated length. EXAMPLE The root_gap of the Buttweld (see **4.2.16**) is an example of the difference between designed length and shop fabricated length. ### 4.2.332.2 end_to_end_length The end_to_end_length specifies the external length of the Straight_pipe. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. # 4.2.333. Stream design case A Stream_design_case is the set of characteristics of a gas, liquid, vapour, or solid stream under a specific circumstance at the termination of a Piping_system_line_segment (see **4.2.252**) or a Plant_item_connector_occurrence (see **4.2.266**). The data associated with a Stream_design_case are the following: ``` description;flow rate; ``` — pressure; — stream_case_type; — stream_data_reference; — stream_design_id. #### **4.2.333.1** description The description specifies a textual explanation or summary of the Stream_design_case. ### 4.2.333.2 flow_rate The flow_rate specifies the stream volume, mass, or molar units per unit time. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.333.3 pressure The pressure specifies the amount of force applied by the stream over a unit area. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.333.4 stream_case_type The stream_case_type specifies the condition that the stream characteristics are being defined under. Stream_case_type is required for each Stream_design_case. EXAMPLE Examples of stream_case_type conditions include normal, upset, and shutdown. #### 4.2.333.5 stream_data_reference The stream_data_reference specifies the sources that provide the basis for the stream data. ### 4.2.333.6 stream_design_id The stream_design_id specifies a unique identifier for the Stream_design_case. Stream_design_id is required for each Stream_design_case. ## 4.2.334. Stream_phase A Stream_phase is the set of characteristics of a single gas, liquid, vapour, or solid stream that may be composed into a Stream_design_case (see **4.2.333**). The data associated with a Stream_phase are the following: | — constituent_mole_fraction; | |--------------------------------| | — constituents; | | — phase_density; | | — phase_fraction; | | <pre>— specific_gravity;</pre> | | <pre>— surface_tension;</pre> | | — temperature; | | — viscosity. | #### 4.2.334.1 constituent_mole_fraction The constituent_mole_fraction specifies the mass ratio of any given component to the whole for the Stream_phase. #### **4.2.334.2** constituents The constituents specifies the various chemicals for the Stream_phase. ### 4.2.334.3 phase_density The phase_density specifies the amount of mass per unit volume for the Stream_phase. #### **4.2.334.4** phase fraction The phase_fraction specifies the percentage of the mass of this Stream_phase in the Stream_design_case (see **4.2.333**). ## 4.2.334.5 specific_gravity The specific_gravity specifies the ratio of the mass of a liquid to the mass of an equal volume of distilled water at 4 degrees Celsius. #### 4.2.334.6 surface_tension The surface_tension specifies the force per unit area of the cohesive forces at or near the surface of a liquid Stream_phase. ### **4.2.334.7** temperature The temperature specifies the measure of molecular motion of a stream. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ### 4.2.334.8 viscosity The viscosity specifies a measure of the resistance of a stream to deformation when subjected to a shear stress. ## 4.2.335. Structural_component A Structural_component is a type of Plant_item (see **4.2.260**) that is an individually identifiable item or combination of items that is part of the Structural_system (see **4.2.337**). NOTE Structural_component objects include structural steel members, load resisting walls, stairs, platforms foundations, supports (excluding pipe supports) for Plant_item (see **4.2.260**) objects, and have a primary function to transfer or resist live or dead loads. The data associated with a Structural_component are the following: | <pre>— exact_section;</pre> | | |-----------------------------|--| | — size_designator; | | | — type. | | #### **4.2.335.1** exact_section The exact section specifies the detailed shape of a cross section of the structural element. #### 4.2.335.2 size designator The size_designator specifies the designation given to some types of plant structural elements to define cross-sectional size and general shape based on industry-standard practice. EXAMPLE W30 X 132 is the U.S. American Institute of Steel Construction (AISC) designation for a wide flange beam of nominal 76.20 centimetres (30 inches) depth weighing 194.88 kilograms per metre (132 pounds per foot) of length. Similar designations exist for other plant structural elements such as angles, channels, and structural tee shapes. Also, like designations exist for other structural elements, e.g., reinforcing bar (#8 rebar). ## 4.2.335.3 type The type specifies a designation that classifies a structural element based on its function in the Structural_system (see **4.2.337**). EXAMPLE Examples of structural element types include beam, column, brace, support, grade beam, and pile. ## 4.2.336. Structural load connector A Structural_load_connector is a type of Plant_item_connector (see **4.2.265**) that connects two Structural_component (see **4.2.335**) objects for the purpose of load transfer. The data associated with a Structural_load_connector are the following: — type. The type specifies either a shear, moment, or shear and moment type of load at the connector. ## 4.2.337. Structural_system A Structural_system is a type of Plant_system (see **4.2.276**) that is an assembly of one or more Structural_component (see
4.2.335) objects and Structural_load_connector (see **4.2.336**) objects. The data associated with a Structural_system are the following: — type. The type specifies a designation that classifies the Structural_system based on the kind of service that it provides. ## 4.2.338. **Stub_in** A Stub_in is a type of Piping_connector (see **4.2.242**) that consists of the welding of two Piping_components (see **4.2.240**) where a Male_end (see **4.2.215**) of one Piping_component is inserted in a Branch_hole (see **4.2.12**) of the other Piping_component. NOTE Figure 64 depicts a typical Stub_in. The data associated with a Stub_in are the following — stub_in_depth. The stub_in_depth specifies the distance from the end of the stubbed-in Piping_component (see **4.2.240**) to the Point (see **4.2.281**) where the centre line of the stubbed-in Piping_component intersects the outer surface of the other Piping_component. It may be specified as a single value or as a range of values. NOTE 1 See annex L for a discussion of attributes that may be assigned a single value or a range of values. NOTE 2 The attribute for stub_in_depth will only be used when the Piping_component (see **4.2.240**) participates in a connection. ## 4.2.339. Stud bolt A Stud bolt is a type of a Bolt (see **4.2.8**) that has screw threads on both ends. The data associated with a Stud_bolt are the following - length. The length specifies the distance from the tip of one screw thread to the tip of the other screw thread of the Stud_bolt. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. ## 4.2.340. Sub_plant_relationship A Sub_plant_relationship is the relationship between Plant (see **4.2.258**) objects and sub-plants and defines their relative locations. EXAMPLE Examples of Sub_plant_relationships include manufacturing Line (see **4.2.196**), Train (see **4.2.356**), and Plant (see **4.2.258**) unit. The data associated with a Sub_plant_relationship are the following: - component; - contains; - location_and_orientation. ### **4.2.340.1** component The component specifies the plant_id of the child Plant (see **4.2.258**) in the Sub_plant_relationship. #### 4.2.340.2 contains The contains specifies the plant_id of the parent Plant (see **4.2.258**) in the Sub_plant_relationship. ### 4.2.340.3 location_and_orientation The location_and_orientation specifies the relative position and orientation of the sub-plant within the Plant (see 4.2.258). # 4.2.341. Supplied_equipment A Supplied_equipment is an Equipment (see **4.2.104**) that is, or is to be, provided by a Supplier (see **4.2.342**) for use in a Plant (see **4.2.258**). The data associated with a Supplied equipment are the following: - delivery_date; - purchase_order_number; - requisition_number. ## **4.2.341.1** delivery_date The delivery_date specifies the calendar day-month-year and time when the Equipment (see **4.2.104**) was, or is, scheduled to be delivered to the Site (see **4.2.313**). NOTE A specific ordering of the day, month, and year within the date is not required. #### 4.2.341.2 purchase_order_number The purchase_order_number specifies an identifier assigned to the Equipment (see **4.2.104**) purchase order. ### 4.2.341.3 requisition_number The requisition_number specifies an identifier assigned to a written request for a piece of Equipment (see **4.2.104**). # **4.2.342.** Supplier A Supplier is the organization that produces a piece of Equipment (see **4.2.104**) or publishes a catalogue. The data associated with a Supplier are the following: - supplier_id; - vendor_name. ### 4.2.342.1 supplier_id The supplier_id specifies a unique identifier for the Supplier. Supplier_id is required for each Supplier. #### 4.2.342.2 vendor_name The vendor_name specifies a textual label used by the company or organization that is providing the Equipment (see **4.2.104**). ## 4.2.343. Support_component A Support_component is a type of Plant_item (see **4.2.260**) that is designed to support other Plant_item objects. This support includes carrying the weight of the Plant_item, including internal fluids and external insulation, permitting thermal expansion and contraction, and dampening any vibrational or seismic forces applied to the Plant_item. Each Support_component may be a Cable_support (see **4.2.18**). EXAMPLE If a Support_component is not a Cable_support (see **4.2.18**), it may be a branch reinforcing pad, a hanger, a footer, pipe rack, or anything that supports the weight of a Plant_item (see **4.2.260**). ## 4.2.344. Support_constraints A Support_constraints is a limitation on the movement of a Plant_item (see **4.2.260**) support, normally in specified directions. | The data associated with a Support_constraints are the following: | |---| | — gap; | | — K; | | — restrained. | ### 4.2.344.1 gap The gap specifies the allowable space between a Plant_item (see **4.2.260**) and a Plant_item support. #### 4.2.344.2 K The K specifies the ratio between the force applied to the support and the support deflection produced by that force. #### **4.2.344.3** restrained The restrained specifies a boolean indicator that specifies whether the Plant_item (see **4.2.260**) support limits movement of the Plant_item in a specified direction. # 4.2.345. Support_usage A Support_usage is the relationship between a defined load bearing element and the Plant_item (see **4.2.260**) that it provides support for. Each Support_usage may be a Support_usage_connection (see **4.2.346**). The data associated with a Support_usage are the following: | — detail_sheet_reference; | | |---------------------------|--| | — function. | | #### 4.2.345.1 detail_sheet_reference The detail_sheet_reference specifies the support detail drawings that define the support. #### **4.2.345.2 function** The function specifies the role or purpose of using the Plant_item (see **4.2.260**) as a support. EXAMPLE Examples of function designations include anchor, guide, restraint, and support. ## 4.2.346. Support_usage_connection A Support_usage_connection is a type of Support_usage (see **4.2.345**) that specifies the actual Plant_item_connection_occurrence (see **4.2.264**) where the support occurs. ### 4.2.347. Surface A Surface is a type of Wire_and_surface_element (see **4.2.372**) that is a set of connected points in 3D geometric space that is always locally 2D, but need not be a manifold. NOTE Surface has many subtypes. Besides being a self-contained object, Surface is used in the definition of other geometric objects such as Point (see **4.2.281**) objects and Curve (see **4.2.85**) objects. It will not be instantiated as it has no attributes. ## **4.2.348. Survey_point** A Survey_point is a particular location (position and elevation) on a Site (see **4.2.313**) relative to a known geographic location. NOTE Survey_point data are established by performing a survey. The collection of Survey_point data can be interpolated to generate a faceted or surface representation of the topography of the Site (see **4.2.313**). # 4.2.349. Swept_bend_pipe A Swept_bend_pipe is a type of Pipe (see **4.2.236**) that is bent to alter the direction of flow of its contents. The data associated with a Swept bend pipe are the following: - wall_thinning_allowance; - centreline_radius; - sweep_angle. #### 4.2.349.1 wall thinning allowance The wall_thinning_allowance specifies the amount of pipe wall material that must be provided to compensate for reduction in wall thickness of the Pipe (see **4.2.236**) caused by bending. NOTE As a Pipe (see **4.2.236**) is bent, the wall thickness on the outside portion of the bend will reduce as material stretches. #### 4.2.349.2 centreline radius The centreline_radius specifies the radius of the Swept_bend_pipe circular arc as measured to the centreline of the Pipe (see **4.2.236**). #### 4.2.349.3 sweep_angle The sweep_angle specifies the subtended angle of the Swept_bend_pipe circular arc. #### **4.2.350. System_space** A System_space is a type of Plant_volume (see **4.2.278**) that is used to describe or allocate a volume of space for use by a Plant_system (see **4.2.276**). EXAMPLE Examples of System_space type designations include electrical chases, HVAC chases, and instrumentation and control chases. #### 4.2.351. Tee A Tee is a type of Fitting (see **4.2.118**) that is a single branched outlet Fitting consisting of a straight run and a perpendicular branch used to permit straight-through and 90-degree flow. NOTE Figure 65 depicts a typical butt-weld Tee. Figure 65 - Tee The data associated with a Tee are the following: - centre_to_end_1_length; - centre_to_end_2_length; - centre_to_end_3_length; - end_1_connector; - end 2 connector; — end 3 connector. #### 4.2.351.1 centre_to_end_1_length The centre_to_end_1_length specifies the distance from the intersection of the Tee straight-run centreline and branch-run centreline to the end-one face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.351.2 centre_to_end_2_length The centre_to_end_2_length specifies the distance from the intersection of the Tee straight-run centreline and branch-run centreline to the end-two face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.351.3 centre_to_end_3_length The centre_to_end_3_length specifies the distance from the intersection of the Tee straight-run centreline and branch-run centreline to the end-three face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.351.4
end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) along the straight-run centreline designated as end one. #### 4.2.351.5 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) along the straight-run centreline designated as end two. #### 4.2.351.6 end 3 connector The end_3_connector specifies the Piping_connector (see **4.2.242**) along the branch-run centreline designated as end three. #### **4.2.352.** Threaded A Threaded is a type of Piping_connector (see **4.2.242**) that is a physical feature of a Plant_item (see **4.2.260**) that allows partial insertion of a male threaded connector. NOTE Figure 66 depicts a typical Threaded end. Figure 66 - Threaded The data associated with a Threaded are the following: — thread_engagement_depth. The thread_engagement_depth specifies the insertion distance of the male threaded connector into a female threaded connector. ## 4.2.353. Threaded_flange A Threaded_flange is a type of Flange (see **4.2.119**) whose bore is Threaded (see **4.2.352**) and that is connected to a Pipe (see **4.2.236**) by screwing a threaded Pipe end into the Flange. NOTE Figure 67 depicts a typical Threaded_flange. Figure 67 - Threaded_flange ## 4.2.354. Toothed_lock_washer A Toothed_lock_washer is a type of Washer (see **4.2.369**). The Toothed_lock_washer has teeth on its outer or inner, or both circular edges. The teeth are bent or twisted to improve electric conductivity when fastened. The data associated with a Toothed_lock_washer are the following: - thickness; - outside_diameter. #### 4.2.354.1 thickness The thickness specifies the distance between two faces of the material plate of the Toothed_lock_washer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.354.2 outside_diameter The outside_diameter specifies the diameter of a circumscribed circle of the Toothed_lock_washer. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.355. Torus A Torus is a type of Csg_element (see **4.2.84**) that is defined by sweeping the area of a circle (with minor radius) about a larger circle. A Torus may be an Reducing_torus (see **4.2.294**). A Torus may be a Trimmed_torus (see **4.2.362**). #### 4.2.356. Train A Train is a type of Plant (see **4.2.258**) that consists of connected Plant_items (see **4.2.260**) that perform a distinct function. It is one of two or more distinct but similar portions of a system that perform the same function. #### 4.2.357. Trimmed block A Trimmed_block is a type of Csg_element (see **4.2.84**) that is formed by cutting a Block (see **4.2.7**) with one or more planes and removing one or more of the resulting sections. #### **4.2.358.** Trimmed cone A Trimmed_cone is a type of Csg_element (see **4.2.84**) that is formed by cutting a Cone (see **4.2.68**) with one or more planes and removing one or more of the resulting sections. #### 4.2.359. Trimmed cylinder A Trimmed_cylinder is a type of Csg_element (see **4.2.84**) that is formed by cutting a Cylinder (see **4.2.86**) with one or more planes and removing one or more of the resulting sections. #### 4.2.360. Trimmed pyramid A Trimmed_pyramid is a type of Csg_element (see **4.2.84**) that is formed by cutting a Pyramid (see **4.2.288**) with one or more planes and removing one or more of the resulting sections. ### 4.2.361. Trimmed_sphere A Trimmed_sphere is a type of Csg_element (see **4.2.84**) that is formed by cutting a Sphere (see **4.2.326**) with one or more planes and removing one or more of the resulting sections. ### 4.2.362. Trimmed_torus A Trimmed_torus is a type of Csg_element (see **4.2.84**) that is formed by cutting a Torus (see **4.2.355**) with one or more planes and removing one or more of the resulting sections. #### **4.2.363.** Trunnion A Trunnion is a type of Piping_support (see **4.2.248**) that is attached to a vertical pipe. The main body of the Trunnion is typically pipe, but shape steel or plate is occasionally used as the material of the part. The Trunnion is placed horizontally and supports the weight that acts perpendicularly to the axis of the main body. NOTE Figure 68 depicts a typical Trunnion. • Figure 68 - Trunnion The data associated with a Trunnion are the following: — length. The length specifies the distance between the outer face of the Trunnion and the location point #### 4.2.364. Union A Union is a type of Fitting (see **4.2.118**) composed of multiple pieces that allows the joining or separating of piping without rotating the piping. It consists of two internally Threaded (see **4.2.352**) ends and a centre piece that draws the two ends together when rotated. NOTE Figure 69 depicts a typical socket-weld Union. Figure 69 - Union The data associated with a Union are the following: - end_1_connector; - end_2_connector; - end_to_end_length; - major_outside_diameter; - minor_outside_diameter. #### 4.2.364.1 end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) that corresponds to the end with the major_outside_diameter. #### 4.2.364.2 end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) that corresponds to the end with the minor_outside_diameter. #### 4.2.364.3 end_to_end_length The end_to_end_length specifies the external distance between the end-one face and the end-two face. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.364.4 major_outside_diameter The major_outside_diameter specifies the maximum diameter of the Union along the centreline, normally at the joint between the two internal pieces of the Union. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.364.5 minor_outside_diameter The minor_outside_diameter specifies the external diameter of the Union at the end-one and end-two connections. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.365. Unit A Unit is a type of Plant (see **4.2.258**) that is the designation (name or number) for a Plant or portion of a Plant that produces the same product by different means. NOTE A Unit may perform a unique function for the Plant (see **4.2.258**) such as oxygen production, or there may be several Units that perform the same function such as multiple Units in a power generation installation. The underground or offsite portion of a Plant may be a Unit. ### 4.2.366. User_defined_attribute_value A User_defined_attribute_value is a name-value pair for any characteristic that is not specified by an explicit attribute of an application object. The User_defined_attribute_value enables the exchange of characteristics and their values that are not defined explicitly by an application object attribute. | The data associated with a User_defined_attribute_value are the following: | |--| | — name; | | — value. | #### 4.2.366.1 name The name specifies a label that characterizes the User_defined_attribute_value. #### 4.2.366.2 value The value specifies the data for the User defined attribute value. #### 4.2.367. Valve A Valve is a type of Piping_component (see **4.2.240**) that provides isolation or controls fluid direction or flow rate. The data associated with a Valve are the following: | <pre>— actuator_type;</pre> | |----------------------------------| | <pre>— operation_mode;</pre> | | — type; | | — valve_stem_orientation; | | — end_to_end_length. | | © ISO 2001 — All rights reserved | #### **4.2.367.1** actuator_type The actuator_type specifies a descriptive designation of device or mechanism used to open, position, or close a Valve. #### 4.2.367.2 operation_mode The operation_mode specifies the failure mode, as in the state of being open or closed when the actuator either has no power or is in the default position. #### 4.2.367.3 type The type specifies a designation that classifies a Valve based on its purpose that defines the design of its internals and externals. EXAMPLE Examples of Valve type designations include gate, globe, check, and relief. #### 4.2.367.4 valve_stem_orientation The valve_stem_orientation specifies the centreline direction of the Valve stem. #### 4.2.367.5 end_to_end_length The end_to_end_length specifies the distance between connecting faces of a Valve. #### 4.2.368. Vector A Vector is a type of Curve (see **4.2.85**). It is specifies a direction in 3D space. #### 4.2.369. Washer A Washer is a type of Bolt_and_nut_component (see **4.2.9**) that is used to improve the tightness of a screw fastener. The Washer is a flattened, ring-shaped device. The data associated with a Washer are the following: — washer_type. The washer_type specifies a classification of the Washer based on its shape characteristics. EXAMPLE Examples of washer_type designations include plain, spring, and toothed_lock. #### 4.2.370. Weld_neck_flange A Weld_neck_flange is a type of Flange (see **4.2.119**) with a tapered hub bored to match the inside diameter of matching Plant_item (see **4.2.260**) and with the hub beveled for butt welding to the Plant_item. NOTE Figure 70 depicts a typical Weld-neck flange. Figure 70 - Weld_neck_flange ### 4.2.371. Weld_neck_jacket_flange A Weld_neck_jacket_flange is a type of Weld_neck_flange (see **4.2.370**) that is welded onto a Piping_spool (see **4.2.246**) that is jacketed closing off the jacket. NOTE Figure 71 depicts a typical Weld_neck_jacket_flange. Figure 71 -
Weld_neck_jacket_flange The data associated with a Weld_neck_jacket_flange are the following: — end_3_connector. The end_3_connector specifies the Piping_ connector (see **4.2.242**) where the outside Pipe (see **4.2.236**) of the jacketed piping connects to the Flange (see **4.2.119**). #### 4.2.372. Wire_and_surface_element A Wire_and_surface_element is a type of Shape_representation_element (see **4.2.310**) that is composed of geometric elements. Each Wire_and_surface_element is either: a Curve (see **4.2.85**), a Point (see **4.2.281**), or a Surface (see **4.2.347**). # 4.2.373. Y_type_lateral A Y_type_lateral is a type of Fitting (see **4.2.118**) that is a three-way fitting whose branches are at equal angles from the straight-run centreline forming a flow passage shaped like the letter "Y". NOTE Figure 72 depicts a typical Y_type_lateral. Figure 72 - Y_type_lateral The data associated with a Y_type_lateral are the following: - angle; - centre_to_end_1_length; - centre to end 2 length; - centre_to_end_3_length; - end_1_connector; - end_2_connector; - end 3 connector. #### 4.2.373.1 angle The angle specifies the angle of the branch portions of the Y_type_lateral with respect to the straight run. It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.373.2 centre_to_end_1_length The centre_to_end_1_length specifies the distance from the intersection of the Y_type_lateral straight-run centreline and branch-run centreline to the end-one working Point (see **4.2.281**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.373.3 centre_to_end_2_length The centre_to_end_2_length specifies the distance from the intersection of the Y_type_lateral straight-run centreline and branch-run centreline to the end-two working Point (see **4.2.281**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.373.4 centre to end 3 length The centre_to_end_3_length specifies the distance from the intersection of the Y_type_lateral straight-run centreline and branch-run centreline to the end-three working Point (see **4.2.281**). It may be specified as a single value or as a range of values. NOTE See annex L for a discussion of attributes that may be assigned a single value or a range of values. #### 4.2.373.5 end_1_connector The end_1_connector specifies the Piping_connector (see **4.2.242**) designated as end one. #### **4.2.373.6** end_2_connector The end_2_connector specifies the Piping_connector (see **4.2.242**) designated as end two. #### 4.2.373.7 end_3_connector The end_3_connector specifies the Piping_connector (see **4.2.242**) designated as end three. ### 4.3. Application assertions This subclause specifies the application assertions for the plant spatial configuration application protocol. Application assertions specify the relationships among application objects, the cardinality of the relationships, and the rules required for the integrity and validity of the application objects and UoFs. The application assertions and their definitions are given below. ### 4.3.1. Analysis_data_point to Plant_item Each Analysis_data_point is defined for zero, one or many Plant_item objects. Each Plant_item has zero, one or many Analysis_data_point objects. #### 4.3.2. Bolt_and_nut_set to Bolt_and_nut_component Each Bolt_and_nut_set consists of one or more Bolt_and_nut_component objects. Each Bolt and nut component is contained in exactly one Bolt and nut set. ## 4.3.3. Breakline to Survey_point Each Breakline is defined by zero, one or many Survey_point objects. Each Survey_point defines zero, one, or many Breakline objects. ## 4.3.4. Building to Location_in_building Each Building is a reference frame for zero, one or many Location_in_building objects. Each Location in building has a reference frame provided by exactly one Building object. ## 4.3.5. Building to Reference_geometry Each Building has column lines defined by zero, one or many Reference_geometry objects. Each Reference_geometry defines column lines for of zero or one Building object. ## 4.3.6. Cable to Cableway_component Each Cable runs through zero, one or many Cableway_component objects. Each Cableway_component contains zero, one or many Cable objects. # 4.3.7. Cableway_size_description to Cableway_component Each Cableway_size_description describes size of zero, one or many Cableway_component objects. Each Cableway_component has a size described by exactly one Cableway_size_description object. #### 4.3.8. Catalogue_connector to Connector_definition Each Catalogue_connector defines zero, one or many Connector_definition objects. . Each Connector_definition is defined by zero or one Catalogue_connector object. ### 4.3.9. Catalogue_definition to Catalogue_connector Each Catalogue_definition contains zero, one or many Catalogue_connector objects. Each Catalogue_connector is contained by exactly one Catalogue_definition object. ### 4.3.10. Catalogue_definition to Catalogue_item Each Catalogue_definition contains zero, one or many Catalogue_item objects. Each Catalogue_item is contained by exactly one Catalogue_definition object. ### 4.3.11. Catalogue_item to Catalogue_item_substitute Each Catalogue_item has zero, one or many Catalogue_item_substitute objects. Each Catalogue_item_substitute is exactly one Catalogue_item object. Each Catalogue_item is a substitute in zero, one or many Catalogue_item_substitute objects. Each Catalogue_item_substitute identifies a substitute for exactly one Catalogue_item object. ## 4.3.12. Catalogue_item to Plant_item_definition Each Catalogue_item defines zero or one Plant_item_definition objects. Each Plant_item_definition is defined by zero or one Catalogue_item object. ## 4.3.13. Change to Change_item Each Change changes one or more Change_item objects. Each Change_item is changed by zero, one, or many Change objects. ## 4.3.14. Change to Change_life_cycle_stage_usage Each Change is assigned by one or more Change_life_cycle_stage_usage objects. Each Change_life_cycle_stage_usage assigns exactly one Change. # 4.3.15. Change_life_cycle_stage to Change_life_cycle_stage_sequence Each Change_life_cycle_stage is the predecessor in zero or one Change_life_cycle_stage_sequence objects. Each Change_life_cycle_stage_sequence has exactly one Change_life_cycle_stage as the predecessor. Each Change_life_cycle_stage is the successor in zero, one or many Change_life_cycle_stage_sequence objects. Each Change_life_cycle_stage_sequence has exactly one Change_life_cycle_stage as the successor. ## 4.3.16. Change_life_cycle_stage to Change_life_cycle_stage_usage Each Change_life_cycle_stage has changes assigned by zero or one Change_life_cycle_stage_usage objects. Each Change_life_cycle_stage_usage assigns changes for exactly one Change_life_cycle_stage. #### 4.3.17. Change life cycle stage usage to Change approval Each Change_life_cycle_stage_usage is approved by zero or one Change_approval objects. Each Change_approval approves exactly one Change_life_cycle_stage_usage. ### 4.3.18. Clamp_set to Bolt_and_nut_component Each Clamp_set consists of one or more Bolt_and_nut_component objects. Each Bolt_and_nut_component is associated with zero or one Clamp_set. ### 4.3.19. Clamp_set to Clamp Each Clamp_set consists of one or more Clamp objects. Each Clamp is associated with exactly one Clamp_set. ## 4.3.20. Connected collection to Plant item connection Each Connected_collection contains zero, one or many Plant_item_connection objects. Each Plant_item_connection participates in zero, one or many Connected_collection objects. ## 4.3.21. Connection_definition to Connector_definition Each Connection_definition connects two or more Connector_definition objects. Each Connector definition is connected by exactly one Connection definition object. # 4.3.22. Connection_definition to Functional connection definition satisfaction Each Connection_definition is functional requirements for zero, one or many Functional_connection_definition_satisfaction objects. Each Functional_connection_definition_satisfaction gets the functional requirements from exactly one Connection_definition_object. Each Connection_definition satisfies requirements for zero, one or many Functional_connection_definition_satisfaction objects. Each Functional_connection_definition_satisfaction has requirements satisfied by exactly one Connection_definition object. # 4.3.23. Connection_definition to Plant_item_connection_occurrence Each Connection_definition defines zero, one or many Plant_item_connection_occurrence objects. Each Plant_item_connection_occurrence is defined by zero or one Connection_definition object. #### 4.3.24. Connection material to Bolt and nut set Each Connection_material includes zero, one or many Bolt_and_nut_set objects. Each Bolt_and_nut_set is used in zero, one or many Connection_material objects. ### 4.3.25. Connection_material to Clamp_set Each Connection_material includes zero, one or many Clamp_set objects. Each Clamp_set is used in zero, one or many Connection_material objects. ### 4.3.26. Connector_definition to Catalogue_connector Each Connector_definition is used as zero, one or many Catalogue_connector objects. Each Catalogue_connector is zero or one Connector_definition object. # **4.3.27.** Connector_definition to Functional_connector_definition_satisfaction Each Connector_definition satisfies requirements for zero, one or many Functional_connector_definition_satisfaction objects. Each Functional_connector_definition_satisfaction has requirements satisfied by exactly one Connector_definition object. Each Connector_definition is functional requirements for zero, one or many
Functional_connector_definition_satisfaction objects. Each Functional_connector_definition_satisfaction gets the functional requirements from exactly one Connector_definition object. ## 4.3.28. Connector_definition to Plant_item_connector_occurrence Each Connector_definition defines zero, one or many Plant_item_connector_occurrence objects. Each Plant item connector occurrence is defined by zero or one Connector definition object. ## 4.3.29. Design_project to Project_design_assignment Each Design_project is performed in one or more Project_design_assignment objects. Each Project design assignment assigns a task to exactly one Pesign project object. #### 4.3.30. Document to Connection_inspection_record Each Document has inspection information defined by zero, one or many Connection_inspection_record objects. Each Connection_inspection_record defines inspection information for zero, one or many Document objects. ## 4.3.31. Document to Piping_spool_inspection_record Each Document has inspection information defined by zero, one or many Piping_spool_inspection_record objects. Each Piping_spool_inspection_record defines inspection information for zero, one or many Document objects. ### 4.3.32. Ducting_system to Stream_design_case Each Ducting_system transports material for zero, one or many Stream_design_case objects. Each Stream_design_case defines potential material for zero, one or many Ducting_system objects. ## 4.3.33. Equipment to Equipment_trim_piping Each Equipment requires zero, one or many Equipment_trim_piping objects. Each Equipment_trim_piping is required by exactly one Equipment object. ## 4.3.34. Equipment to Supplied_equipment Each Equipment is used as zero, one or many Supplied_equipment objects. Each Supplied_equipment is exactly one Equipment object. # 4.3.35. Facet_trigon to Survey_point Each Facet_trigon is defined by exactly three Survey_point objects. Each Survey_point defines zero, one or many Facet_trigon objects. ## 4.3.36. Faceted_surface_representation to Facet_trigon Each Faceted_surface_representation is composed of one or more Facet_trigon objects. Each Facet_trigon is a component of exactly one Faceted_surface_representation object. # **4.3.37.** Functional_connector to Functional_connector_occurrence_satisfaction Each Functional_connector is the functional requirements for zero, one, or many Functional_connector_occurrence_satisfaction objects. Each Functional_connector_occurrence_satisfaction gets the functional requirements from exactly one Functional_connector object. # **4.3.38.** Functional_design_view to Functional_plant_item_satisfaction Each Functional_design_view is functional requirements for zero, one or many Functional_plant_item_satisfaction objects. Each Functional_plant_item_satisfaction gets the functional requirements from exactly one Functional_design_view object. #### 4.3.39. Functional_plant to Functional_plant_satisfaction Each Functional_plant is functional requirements for zero, one or many Functional_plant_satisfaction objects. Each Functional_plant_satisfaction gets the functional requirements from exactly one Functional_plant object. #### 4.3.40. Functional_plant to Plant_system Each Functional_plant is made up of zero, one or many Plant_system objects. Each Plant_system is part of exactly one Functional_plant object. # 4.3.41. Functional_design_view to Functional_plant_item_satisfaction Each Functional_design_view is the functional requirements for zero, one or many Functional_plant_item_satisfaction. Each Functional_plant_item_satisfaction gets the functional requirements from exactly one Functional_design_view. ## 4.3.42. Hvac_component to Hvac_access_opening Each Hvac_component object is accessed through zero, one or many Hvac_access_opening objects. Each Hvac_access_opening object belongs to exactly one Hvac_component object. # **4.3.43.** Hvac_component to Hvac_component_thickness Each Hvac_component has skin thickness of zero, one or many Hvac_component_thickness objects. Each Hvac_component_thickness defines the skin thickness for exactly one Hvac component object ## 4.3.44. Hvac connector to Hvac connector service characteristic Each Hvac_connector has zero, one or many Hvac_connector_service_characteristic objects. Each Hvac_connector_service_characteristic belongs to exactly one Hvac_connector object. ## 4.3.45. Hvac_connector to Hvac_cross_section Each Hvac_connector defines cross section of zero, one or many Hvac_cross_section objects. Each Hvac_cross_section is defined by exactly one Hvac_connector object. # 4.3.46. Hvac_connector_service_characteristic to Service_operating_case Each Hvac_connector_service_characteristic supports zero, one or many Service_operating_case objects. Each Service_operating_case is associated with exactly one Hvac_connector_service_characteristic object. ### 4.3.47. Hvac_elbow_90deg_reducing to Splitter Each Hvac_elbow_90deg_reducing has zero, one or many Splitter objects. Each Splitter reduces the potential turbulence for exactly one Hvac_elbow_90deg_reducing. ## 4.3.48. Hvac_elbow_centred to Splitter Each Hvac_elbow_centred has zero, one or many Splitter objects. Each Splitter reduces the potential turbulence for exactly one Hvac_elbow_centred. ## 4.3.49. Hvac_elbow_mitre to Splitter Each Hvac_elbow_mitre has zero, one or many Splitter objects. Each Splitter reduces the potential turbulence for exactly one Hvac elbow mitre. ### 4.3.50. Hvac_equipment to Hvac_flow_control_device Each Hvac_equipment object is controlled by zero, one or many Hvac_flow_control_device objects. Each Hvac_flow_control_device object controls zero, one or many Hvac_equipment objects. # **4.3.51. Hvac_instrument to Hvac_flow_control_device** Each Hvac_instrument object provides data for zero, one or many Hvac_flow_control_device objects. Each Hvac_flow_control_device object is associated with zero or one Hvac_instrument objects. # 4.3.52. Hvac_offset_centred to Splitter Each Hvac_offset_centred has zero, one or many Splitter objects. Each Splitter reduces the potential turbulence for exactly one Hvac_offset_centred. # 4.3.53. Hvac_plant_item_branch_connector to Hvac_plant_item_branch_connection Each Hvac_plant_item_branch_connector is connected to zero or one Hvac_plant_item_branch_connection . Each Hvac_plant_item_branch_connection is associated with exactly one Hvac_plant_item_branch_connector. # 4.3.54. Hvac_plant_item_connector to Hvac_plant_item_connection Each Hvac_plant_item_connector is connected to exactly two Hvac_plant_item_connection objects. Each Hvac_plant_item_connection is associated with exactly one Hvac_plant_item_connector. # 4.3.55. Hvac_plant_item_termination to Hvac_plant_item_connection Each Hvac_plant_item_termination is connected to exactly one Hvac_plant_item_connection. Each Hvac_plant_item_connection is associated with exactly one Hvac_plant_item_termination. # 4.3.56. Hvac_section_branch_termination to Hvac_branch_connection Each Hvac_section_branch_termination branches from zero, one or many Hvac_branch_connection objects. Each Hvac_branch_connection is associated with exactly one Hvac section branch termination. #### 4.3.57. Hvac section segment to Hvac branch connection Each Hvac_section_segment is connected to zero, one or many Hvac_branch_connection objects. Each Hvac_branch_connection is associated with exactly one Hvac_section_segment. # 4.3.58. Hvac_section_segment to Hvac_plant_item_branch_connection Each Hvac_section_segment is connected to zero, one or many Hvac_plant_item_branch_connection objects. Each Hvac_plant_item_branch_connection is associated with exactly one Hvac section segment. ## 4.3.59. Hvac_section_segment to Hvac_section_segment_insulation Each Hvac_section_segment has zero, one or many Hvac_section_segment_insulation objects. Each Hvac_section_segment_insulation is associated with exactly one Hvac_section_segment. # 4.3.60. Hvac_section_segment to Hvac section_segment_termination Each Hvac_section_segment is terminated by exactly two Hvac_section_segment_termination objects. Each Hvac_section_segment_termination is associated with exactly one Hvac_section_segment. # 4.3.61. Hvac_section_segment to Hvac_section_termination Each Hvac_section_segment is started or ended by zero, one, or two Hvac_section_termination objects. Each Hvac_section_termination is associated with exactly one Hvac_section_segment. © ISO 2001 — All rights reserved #### 4.3.62. Hvac_section_segment to Stream_design_case Each Hvac_section_segment transports material for zero, one or many Stream_design_case objects. Each Stream_design_case defines potential material for zero, one or many Hvac_section_segment objects. # 4.3.63. Hvac_section_to_section_connection to Hvac_section_to_section_termination Each Hvac_section_to_section_connection connects zero, one or many Hvac_section_to_section_termination objects. Each Hvac_section_to_section_termination is associated with zero or one Hvac_section_to_section_connection objects. ### 4.3.64. Hvac_specification to Hvac_section_segment Each Hvac_specification specifies components for zero, one or many Hvac_section_segment objects. Each Hvac_section_segment has components specified by exactly one Hvac_specification object. #### 4.3.65. Hvac system section to Hvac section segment Each Hvac_system_section has at least one Hvac_section_segment object. Each Hvac_section_segment is associated with exactly one Hvac_system_section. ## 4.3.66. Inspection_condition to Connection_inspection_record Each Inspection_condition is specified under zero, one or many Connection_inspection_record objects. Each Connection_inspection_record defines the environment for zero, one or many Inspection condition objects. # 4.3.67. Inspection_condition to Piping_component_inspection_record Each Inspection_condition is specified under zero, one or many Piping_component_inspection_record objects. Each Piping_component_inspection_record defines the environment for zero, one or many Inspection_condition
objects. # 4.3.68. Line_branch_connection to Changed_line_branch_connection Each Line_branch_connection is changed by zero, one, or many Changed_line_branch_connection objects. Each Changed_line_branch_connection changes exactly one Line_branch_connection. #### 4.3.69. Line branch termination to Line branch connection Each Line_branch_termination is branched from exactly one Line_branch_connection object. Each Line_branch_connection branches to exactly one Line_branch_termination object. #### 4.3.70. Line_less_piping_system to Piping_system_component Each Line_less_piping_system is composed of zero, one or many Piping_system_component objects. Each Piping_system_component is a component of zero, one or many Line_less_piping_system objects. ## 4.3.71. Line_less_piping_system to Stream_design_case Each Line_less_piping_system transports material for zero, one, or many Stream_design_case objects. Each Stream_design_case defines potential material for zero, one, or many Line_less_piping_system objects. # 4.3.72. Line_piping_system_component_assignment to Changed_line_assignment Each Line_piping_system_component_assignment is changed by zero, one, or many Changed_line_assignment objects. Each Changed_line_assignment changes exactly one Line_piping_system_component_assignment. # 4.3.73. Line_plant_item_branch_connection to Changed_line_plant_item_branch_connection Each Line_plant_item_branch_connection is changed by zero, one, or many Changed_line_plant_item_branch_connection objects. Each Changed_line_plant_item_branch_connection changes exactly one Line_plant_item_branch_connection. # 4.3.74. Line_plant_item_branch_connector to Line_plant_item_branch_connection Each Line_plant_item_branch_connector is connected to zero or one Line_plant_item_branch_connection object. Each Line_plant_item_branch_connection connects exactly one Line_plant_item_branch_connector object. # 4.3.75. Line_plant_item_connection to Changed line plant item connection Each Line_plant_item_connection is changed by zero, one, or many Changed_line_plant_item_connection objects. Each Changed_line_plant_item_connection changes exactly one Line_plant_item_connection. # 4.3.76. Line_plant_item_connector to Line_plant_item_connection Each Line_plant_item_connector is connected to zero or one Line_plant_item_connection object. Each Line_plant_item_connection connects exactly one Line_plant_item_connector object. # 4.3.77. Line_plant_item_termination to Line_plant_item_connection Each Line_plant_item_termination is connected to exactly one Line_plant_item_connection object. Each Line_plant_item_connection connects exactly one Line_plant_item_termination object. # 4.3.78. Line_to_line_connection to Changed line to line connection Each Line_to_line_connection is changed by zero, one or many Changed_lineto_line_connection objects. Each Changed_line_to_line_connection changes exactly one Line_to_line_connection object. ### 4.3.79. Line to line connection to Line to line termination Each Line_to_line_connection connects two or more Line_to_line_termination objects. Each Line_to_line_termination is connected by exactly one Line_to_line_connection object. # **4.3.80.** Material_specification_selection to Material_specification_subset_reference Each Material_specification_selection is used by zero, one or many Material_specification_subset_reference objects. Each Material_specification_subset_reference uses exactly one Material_specification_selection object. ## 4.3.81. Node to Piping_system Each Node contains zero, one or many Piping_system objects. Each Piping_system defines branch point for zero, one or many Node objects. # 4.3.82. Physical_connector to Functional connector occurrence satisfaction Each Physical_connector satisfies requirements for zero, one or many Functional_connector_occurrence_satisfaction objects. Each Functional_connector_occurrence_satisfaction has requirements satisfied by exactly one Physical_connector object. # 4.3.83. Physical_design_view to Functional_plant_item_satisfaction Each Physical_design_view satisfies requirements for zero, one or many Functional_plant_item_satisfaction objects. Each Functional_plant_item_satisfaction has requirements satisfied by exactly one Physical_design_view object. ### 4.3.84. Physical_design_view to Installed_physical_design_view Each Physical_design_view is used as zero or one Installed_physical_design_view object. Each Installed_physical_design_view is exactly one Physical_design_view object. #### 4.3.85. Piping_assembly to Piping_assembly_assignment Each Piping_assembly is in zero, one or many Piping_assembly_assignment objects. Each piping_assembly_assignment assembles exactly one Piping_assembly. ### 4.3.86. Piping_component to Family_definition Each Piping_component defines zero or one Family_definition object. Each Family_definition is defined by zero or one Piping_component object. ## 4.3.87. Piping_component to Piping_component_inspection_record Each Piping_component has zero, one or many Piping_component_inspection_record objects. Each Piping_component_inspection_record belongs to exactly one Piping_component object. ### 4.3.88. Piping_component_inspection_record to Document Each Piping_component_inspection_record has inspection information defined by zero, one or many Document objects. Each Document defines inspection information for zero, one or many Piping_component_inspection_record objects. ## 4.3.89. Piping_connector to Piping_connector_service_characteristic Each Piping_connector provides zero or one Piping_connector_service_characteristic object. Each Piping_connector_service_characteristic is provided by exactly one Piping_connector object. ## 4.3.90. Piping_connector to Piping_size_description Each Piping_connector has a size described by zero, one or many Piping_size_description objects. Each Piping_size_description describes the size of zero, one or many Piping_connector objects. # **4.3.91.** Piping_connector_service_characteristic to Service_operating_case Each Piping_connector_service_characteristic supports zero, one or many Service_operating_case objects. Each Service_operating_case is supported by exactly one Piping_connector_service_characteristic object. ## 4.3.92. Piping_specification to Changed_piping_specification Each Piping_specification is changed by zero, one, or many Changed_piping_specification objects. Each Changed_piping_specification changes exactly one Piping_specification. ### 4.3.93. Piping_specification to Family_definition Each Piping_specification is composed of one or more Family_definition objects. Each Family_definition is part of exactly one Piping_specification object. ### 4.3.94. Piping_specification to Piping_system_line_segment Each Piping_specification specifies components for zero, one or many Piping_system_line_segment objects. Each Piping_system_line_segment has components specified by exactly one Piping_specification object. ## 4.3.95. Piping_spool to Piping_spool_inspection_record Each Piping_spool has zero, one or many Piping_spool_inspection_record objects. Each Piping_spool_inspection_record is part of exactly one Piping_spool object. ## 4.3.96. Piping_spool to Shape_inspection_record Each Piping_spool has zero, one or many Shape_inspection_record objects. Each Shape_inspection_record is part of zero or one Piping_spool object. ### 4.3.97. Piping spool inspection record to Inspection condition Each Piping_spool_inspection_record is specified under zero, one or many Inspection_condition objects. Each Inspection_condition defines the environment for zero, one or many Piping_spool_inspection_record objects. ## 4.3.98. Piping_system to Piping_system_line Each Piping_system is made up of zero, one or many Piping_system_line objects. Each Piping_system_line is part of exactly one Piping_system object. # 4.3.99. Piping_system_component to Equipment_trim_piping Each Piping_system_component is used as zero, one or many Equipment_trim_piping objects. Each Equipment_trim_piping is exactly one Piping_system_component object. ## 4.3.100. Piping_system_component to Line_piping_system_component_assignment Each Piping_system_component satisfies zero, one or many Line_piping_system_component_assignment objects. Each Line_piping_system_component_assignment is satisfied by exactly one Piping_system_component object. ## 4.3.101. Piping_system_component to Piping_size_description Each Piping_system_component has a size described by zero, one or many Piping_size_description objects. Each Piping_size_description describes the size of zero, one or many Piping_system_component objects. ## 4.3.102. Piping_system_line to Changed_piping_system_line Each Piping_system_line is changed by zero, one, or many Changed_piping_system_line objects. Each Changed_piping_system_line changes exactly one Piping_system_line. ### 4.3.103. Piping_system_line to Piping_system_line_segment Each Piping_system_line is composed of one or more Piping_system_line_segment objects. Each Piping_system_line_segment is a component of exactly one Piping_system_line object. ### 4.3.104. Piping_system_line to Piping_system_line_termination Each Piping_system_line is start or ended by zero, one or two Piping_system_line_termination objects. Each Piping_system_line_termination starts or ends exactly one Piping_system_line object. # 4.3.105. Piping_system_line_segment to Changed_piping_system_line_segment Each Piping_system_line_segment is changed by zero, one, or many Changed_piping_system_line_segment objects. Each Changed_piping_system_line_segment changes exactly one Piping_system_line_segment. # 4.3.106. Piping_system_line_segment to Line_branch_connection Each Piping_system_line_segment has branches defined by zero, one or many Line_branch_connection objects. Each Line_branch_connection defines the branches of exactly one Piping_system_line_segment object. # 4.3.107. Piping_system_line_segment to Line_plant_item_branch_connection Each Piping_system_line_segment is connected to zero, one,
or many Line_plant_item_branch_connection objects. Each Line_plant_item_branch_connection defines the branches of exactly one Piping_system_line_segment. # 4.3.108. Piping_system_line_segment to Line_piping_system_component_assignment Each Piping_system_line_segment defines the need for zero, one or many Line_piping_system_component_assignment objects. Each Line_piping_system_component_assignment satisfies the need defined by exactly one Piping_system_line_segment object. # **4.3.109.** Piping_system_line_segment to Piping_system_line_segment_termination Each Piping_system_line_segment is terminated by exactly two Piping_system_line_segment_termination objects; one is termination_1 and the other is termination_2. Each Piping_system_line_segment_termination terminates exactly one Piping_system_line_segment object. ## 4.3.110. Piping_system_line_segment to Segment_insulation Each Piping_system_line_segment requires zero, one or many Segment_insulation objects. Each Segment_insulation is required by exactly one Piping_system_line_segment object. ## 4.3.111. Piping_system_line_segment to Stream_design_case Each Piping_system_line_segment defines transport needs for zero, one, or many Stream_design_case objects. Each Stream_design_case defines potential material for zero, one, or many Piping_system_line_segment objects. # **4.3.112.** Piping_system_line_segment_termination to Changed_piping_system_line_segment_termination Each Piping_system_line_segment_termination is changed by zero, one, or many Changed_piping_system_line_segment_termination objects. Each Changed_piping_system_line_segment_termination changes exactly one Piping_system_line_segment_termination. # 4.3.113. Planned_physical_plant to Changed_planned_physical_plant Each Planned_physical_plant is changed by zero, one, or many Changed_planned_physical_plant objects. Each Changed_planned_physical_plant changes exactly one Planned_physical_plant. ## 4.3.114. Planned_physical_plant to Functional_plant_satisfaction Each Planned_physical_plant satisfies requirements for zero, one or many Functional_plant_satisfaction objects. Each Functional_plant_satisfaction has requirements satisfied by exactly one Planned_physical_plant object. ## 4.3.115. Planned_physical_plant to Location_in_plant Each Planned_physical_plant contains zero, one or many Location_in_plant objects. Each Location_in_plant is located in zero, one or many Planned_physical_plant objects. ## 4.3.116. Planned_physical_plant to Sited_plant Each Planned_physical_plant is used as zero or one Sited_plant object. Each Sited_plant is exactly one Planned_physical_plant object. # 4.3.117. Planned_physical_plant_item to Piping_assembly_assignment Each Planned_physical_plant_item is assigned by zero or one Piping_assembly_assignment object. Each Piping_assembly_assignment assigns exactly one Planned_physical_plant_item object. # 4.3.118. Planned_physical_plant_item to Plant item connector occurrence Each Planned_physical_plant_item has zero, one or many Plant_item_connector_occurrence objects. Each Plant_item_connector_occurrence is part of exactly one Planned_physical_plant_item object. ## 4.3.119. Planned_physical_plant_item to Support_usage Each Planned_physical_plant_item is supported by zero, one or many Support_usage objects. Each Support_usage identifies exactly one Planned_physical_plant_item object that supports another. Each Planned_physical_plant_item supports zero, one or many Support_usage objects. Each Support_usage identifies exactly one Planned_physical_plant_item object that is supported. #### 4.3.120. Plant to Changed_plant Each Plant is changed by zero, one, or many Changed_plant objects. Each Changed_plant changes exactly one Plant. ## 4.3.121. Plant to External_classification Each Plant is classified by zero, one or many External_classification objects. Each External_classification classifies zero, one or many Plant objects. ### 4.3.122. Plant to Functional_plant Each Plant is used as zero or one Functional_plant object. Each Functional_plant is exactly one Plant object. ## 4.3.123. Plant to Planned_physical_plant Each Plant is realized as zero, one or many Planned_physical_plant objects. Each Planned_physical_plant is the realization of exactly one Plant object. ## 4.3.124. Plant to Plant_process_capability Each Plant produces zero, one or many Plant_process_capability objects. Each Plant_process_capability is produced by exactly one Plant object. #### 4.3.125. Plant to Sub_plant_relationship Each Plant contains zero, one or many Sub_plant_relationship objects. Each Sub_plant_relationship is contained in exactly one Plant object. Each Plant is used in zero, one or many Sub_plant_relationship objects. Each Sub-plant_relationship uses exactly one Plant object. ### 4.3.126. Plant_item to Changed_plant_item Each Plant_item is changed by zero, one, or many Changed_plant_item objects. Each Changed plant item changes exactly one Plant item. #### 4.3.127. Plant_item to Document Each Plant_item has reference of zero, one or many Document objects. Each Document is reference for zero, one or many Plant_item objects. ### 4.3.128. Plant_item to External_classification Each Plant_item is classified by zero, one or many External_classification objects. Each External_classification classifies zero, one or many Plant_item objects. #### 4.3.129. Plant_item to Insulation Each Plant_item is insulated by zero, one or many Insulation objects. Each Insulation insulates zero or one Plant_item object. ## 4.3.130. Plant_item to Plant_item_collection Each Plant_item is a group of zero, one, or many Plant_item_collection objects. Each Plant_item_collection identifies as a group exactly one Plant_item object. Each Plant_item is an element in zero, one or many Plant_item_collection objects. Each Plant_item_collection identifies as an element of a collection exactly one Plant_item object. ## 4.3.131. Plant_item to Plant_item_design_view Each Plant_item is defined as one or more Plant_item_design_view objects. Each Plant_item_design_view defines exactly one Plant_item object. ## 4.3.132. Plant_item to Plant_item_shape Each Plant_item is spatially described by zero or one Plant_item_shape object. Each Plant_item_shape spatially describes exactly one Plant_item object. #### 4.3.133. Plant item to Plant_item_weight Each Plant_item is measured as having zero, one or many Plant_item_weight objects. Each Plant_item_weight is the measured weight of exactly one Plant_item object. ## 4.3.134. Plant_item to Reference_geometry Each Plant_item references zero, one or many Reference_geometry objects. Each Reference_geometry is referenced by zero, one or many Plant_item objects. ### 4.3.135. Plant_item to Required_material_description Each Plant_item satisfies zero, one or many Required_material_description objects. Each Required_material_description is satisfied by zero, one or many Plant_item objects. ### 4.3.136. Plant_item to Spare_plant_item_usage Each Plant_item is the primary plant item in zero, one or many Spare_plant_item_usage objects. Each Spare_plant_item_usage has as a primary plant item exactly one Plant_item object. Each Plant_item is the spare plant item in zero, one or many Spare_plant_item_usage objects. Each Spare_plant_item_usage has as a spare plant item exactly one Plant_item object. ### 4.3.137. Plant_item to User_defined_attribute_value Each Plant_item is characterized by zero, one or many User_defined_attribute_value objects. Each User_defined_attribute_value characterizes exactly one Plant_item object. ## 4.3.138. Plant_item_collection to Changed_plant_item_collection Each Plant_item_collection is changed by zero, one, or many Changed_plant_item_collection objects. Each Changed_plant_item_collection changes exactly one Plant_item_collection. ## 4.3.139. Plant_item_connection to Changed_plant_item_connection Each Plant_item_connection is changed by zero, one, or many Changed_plant_item_connection objects. Each Changed_plant_item_connection changes exactly one Plant_item_connection. ## 4.3.140. Plant_item_connection to Connection_inspection_record Each Plant_item_connection has zero, one or many Connection_inspection_record objects. Each Connection_inspection_record is part of exactly one Plant_item_connection object. #### 4.3.141. Plant item connection to Connection material Each Plant_item_connection uses one or more Connection_material objects. Each Connection_material is used by exactly one Plant_item_connection object. # **4.3.142.** Plant_item_connection_occurrence to Functional connection occurrence satisfaction Each Plant_item_connection_occurrence is the functional requirements for zero, one or many Functional_connection_occurrence_satisfaction objects. Each Functional_connection_occurrence_satisfaction gets the functional requirements from exactly one Plant_item_connection_occurrence object. Each Plant_item_connection_occurrence satisfies the requirements for zero, one or many Functional_connection_occurrence_satisfaction objects. Each Functional_connection_occurrence_satisfaction has requirements satisfied by exactly one Plant item connection occurrence object. # 4.3.143. Plant_item_connection_occurrence to Plant item connector occurrence Each Plant_item_connection_occurrence connects two or more Plant_item_connector_occurrence objects. Each Plant_item_connector_occurrence is connected by zero or one Plant_item_connection_occurrence object. #### 4.3.144. Plant item connector to Changed plant item connector Each Plant_item_connector is changed by zero, one, or many Changed_plant_item_connector objects. Each Changed_plant_item_connector changes exactly one Plant_item_connector. ### 4.3.145. Plant item connector to Document Each Plant_item_connector has reference of zero, one or many Document objects. Each Document is reference for zero, one or many Plant_item_connector objects. #### 4.3.146. Plant item connector to External classification Each Plant_item_connector is classified by zero, one or
many External_classification objects. Each External_classification classifies zero, one or many Plant_item_connector objects. # 4.3.147. Plant_item_connector to Piping_component_inspection_record Each Plant_item_connector has zero, one or many Piping_component_inspection_record objects. Each Piping_component_inspection_record is part of exactly one Plant_item_connector object. ### 4.3.148. Plant item connector to Required material description Each Plant_item_connector has material requirements defined by zero, one or many Required_material_description objects. Each Required_material_description defines material requirements for zero, one or many Plant_item_connector objects. ## 4.3.149. Plant_item_connector to Shape_representation Each Plant_item_connector has shape defined by zero, one or many Shape_representation objects. Each Shape_representation defines the shape of zero, one or many Plant_item_connector objects. ### 4.3.150. Plant_item_definition to Catalogue_item Each Plant_item_definition is used as zero, one or many Catalogue_item objects. Each Catalogue_item is zero or one Dlant_item_definition object. ### 4.3.151. Plant_item_definition to Connector_definition Each Plant_item_definition has one or more Connector_definition objects. Each Connector_definition is part of zero or one Plant_item_definition object. #### 4.3.152. Plant_item_definition to Planned_physical_plant_item Each Plant_item_definition defines zero, one or many Planned_physical_plant_item objects. Each Planned_physical_plant_item is defined by zero or one Plant_item_definition object. #### 4.3.153. Plant_item_instance to Plant_item_interference Each Plant_item_instance is the first item in zero, one or many Plant_item_interference objects. Each Plant_item_interference has as its first item exactly one Plant_item_instance object. Each Plant_item_instance is the second item in zero, one or many Plant_item_interference objects. Each Plant_item_interference has as its second item exactly one Plant_item_instance object. #### 4.3.154. Plant item instance to Plant item location Each Plant_item_instance is located by zero or one Plant_item_location object. Each Plant_item_location locates exactly one Plant_item_instance object. A Plant_item_instance shall be located only once in either a plant, site, or building or multiple times with respect to other Plant_item objects. A Plant_item_instance shall not be located more than once in a plant, site, or building. ## 4.3.155. Plant_item_instance to Project_design_assignment Each Plant_item_instance is assigned by zero, one or many Project_design_assignment objects. Each Project_design_assignment assigns exactly one Plant_item_instance object. #### 4.3.156. Plant item instance to Relative item location Each Plant_item_instance is the referenced item for zero, one or many Relative_item_location objects. Each Relative_item_location references exactly one Plant_item_instance object. #### 4.3.157. Plant item interference to Interfering shape element Each Plant_item_interference has intersecting geometry of zero, one or many Interfering_shape_element objects. Each Interfering_shape_element is the intersecting geometry for exactly one Plant_item_interference object. ### 4.3.158. Plant_item_interference to Plant_item_interference_status Each Plant_item_interference has a status of one or more Plant_item_interference_status objects. Each Plant_item_interference_status provides the status for exactly one Plant_item_interference object. ## 4.3.159. Plant_item_interference to Shape_interference_zone_usage Each Plant_item_interference has a zone of interference defined by zero, one or many Shape_interference_zone_usage objects. Each Shape_interference_zone_usage defines the zone of interference for exactly one Plant_item_interference object. ### 4.3.160. Plant_item_location to Changed_plant_item_location Each Plant_item_location is changed by zero, one, or many Changed_plant_item_location objects. Each Changed_plant_item_location changes exactly one Plant_item_location. #### 4.3.161. Plant_item_shape to Changed_plant_item_shape Each Plant_item_shape is changed by zero, one, or many Changed_plant_item_shape objects. Each Changed_plant_item_shape changes exactly one Plant_item_shape. ## 4.3.162. Plant_item_shape to Shape_representation Each Plant_item_shape is defined using zero, one or many Shape_representation objects. Each Shape_representation defines exactly one Plant_item_shape object. # 4.3.163. Plant_process_capability to Changed_plant_process_capability Each Plant_process_capability is changed by zero, one, or many Changed_plant_process_capability objects. Each Changed_plant_process_capability changes exactly one Plant_process_capability. # 4.3.164. Plant_system to Changed_plant_system Each Plant_system is changed by zero, one, or many Changed_plant_system objects. Each Changed_plant_system changes exactly one Plant_system. ## 4.3.165. Plant_system to External_classification Each Plant_system is classified by zero, one or many External_classification objects. Each External classification classifies zero, one or many Plant system objects. ### 4.3.166. Plant_system to Plant_item Each Plant_system is composed of zero, one or many Plant_item objects. Each Plant_item is part of zero, one or many Plant system objects. #### 4.3.167. Plant_system to Plant_system_assembly Each Plant_system is the super-system in zero, one or many Plant_system_assembly objects. Each Plant_system_assembly has exactly one Plant_system object as the super-system. Each Plant_system is the sub-system in zero, one or many Plant_system_assembly objects. Each Plant_system_assembly has exactly one Plant_system object as the sub-system. ### 4.3.168. Point_and_line_representation to Survey_point Each Point_and_line_representation is defined by zero, one or many Survey_point objects. Each Survey_point defines zero, one or many Point_and_line_representation objects. ### 4.3.169. Raceway to Raceway_lane Each Raceway contains zero, one or many Raceway_lane objects. Each Raceway_lane is contained in exactly one Raceway object. ## 4.3.170. Reference_geometry to Changed_reference_geometry Each Reference_geometry is changed by zero, one, or many Changed_reference_geometry objects. Each Changed reference geometry changes exactly one Reference geometry. ## 4.3.171. Reference_geometry to Shape_representation_element Each Reference_geometry is described by zero, one or many Shape_representation_element objects. Each Shape_representation_element provides description of zero, one or many Reference_geometry objects. # 4.3.172. Required_material_description to Changed_required_material_description Each Required_material_description is changed by zero, one, or many Changed_required_material_description objects. Each Changed_required_material_description changes exactly one Required_material_description. # **4.3.173.** Required_material_description to Material_specification_selection Each Required_material_description is satisfied by zero, one or many Material_specification_selection objects. Each Material_specification_selection satisfies zero, one or many Required material description objects. #### **4.3.174.** Route to Node Each Route consists of one or more Node objects. Each Node is associated with exactly one Route. ### **4.3.175.** Route to Piping_system_line_segment Each Route is composed of zero, one or many Piping_system_line_segment objects. Each Piping_system_line_segment is a component of zero or one Route object. ### **4.3.176.** Shape_inspection_record to Plant_item_connector Each Shape_inspection_record has inspected shape defined by zero, one or many Plant_item_connector objects. Each Plant_item_connector defines inspected shape of zero, one or many Shape inspection record objects. ### 4.3.177. Shape_representation to Shape_representation_element_usage Each Shape_representation is defined by one or more Shape_representation_element_usage objects. Each Shape_representation_element_usage defines exactly one Shape_representation object. # **4.3.178.** Shape_representation_element to Shape interference zone usage Each Shape_representation_element defines a volume for zero or one Shape_interference_zone_usage object. Each Shape_interference_zone_usage has a volume defined by exactly one Shape_representation_element object. # **4.3.179.** Shape_representation_element to Shape_representation_element_usage Each Shape_representation_element provides a definition for zero or one Shape_representation_element_usage object. Each Shape_representation_element_usage has a definition provided by exactly one Shape_representation_element object. # **4.3.180.** Shape_representation_element_usage to Interfering_shape_element Each Shape_representation_element_usage is the intersecting geometry of zero, one or many Interfering_shape_element objects. Each Interfering_shape_element uses as intersecting geometry exactly one Shape_representation_element_usage object. ### 4.3.181. Site to Building Each Site has located on it zero, one or many Building objects. Each Building is located on exactly one Site object. #### 4.3.182. Site to Changed_site Each Site is changed by zero, one, or many Changed_site objects. Each Changed_site changes exactly one Site. ### 4.3.183. Site to Location_in_site Each Site is a reference frame for zero, one or many Location_in_site objects. Each Location_in_site has a reference frame provided by exactly one Site object. #### 4.3.184. Site to Site_feature Each Site contains zero, one or many Site_feature objects. Each Site_feature is contained in exactly one Site object. ## 4.3.185. Site to Site_shape_representation Each Site has shape defined by zero, one or many Site_shape_representation objects. Each Site_shape_representation defines the shape of exactly one Site object. ### 4.3.186. Site to Sited_plant Each Site has located on it one or more Sited_plant objects. Each Sited_plant is located on exactly one Site object. # 4.3.187.
Site_feature to Changed_site_feature Each Site_feature is changed by zero, one, or many Changed_site_feature objects. Each Changed_site_feature changes exactly one Site_feature. ## 4.3.188. Site_shape_representation to Breakline Each Site_shape_representation is constrained by zero, one or many Breakline objects. Each Breakline constrains zero or one Site_shape_representation object. ## 4.3.189. Site_shape_representation to Gis_position Each Site_shape_representation has a global position defined by zero or one Gis_position. Each Gis_position defines the global position for exactly one Site_shape_representation object. ## 4.3.190. Sited_plant to Changed_sited_plant Each Sited_plant is changed by zero, one, or many Changed_sited_plant objects. Each Changed_sited_plant changes exactly one Sited_plant. ### 4.3.191. Stream_design_case to Line_less_piping_system Each Stream_design_case transports material for zero, one or many Line_less_piping_system objects. Each Line_less_piping_system is associated with zero, one or many Stream_design_case objects. #### 4.3.192. Stream_design_case to Piping_system_line_segment Each Stream_design_case defines transport needs for zero, one or many Piping_system_line_segment objects. Each Piping_system_line_segment defines potential material for zero, one or many Stream_design_case objects. #### 4.3.193. Stream_design_case to Service_operating_case Each Stream_design_case defines zero, one or many Service_operating_case objects. Each Service operating case is defined by exactly one Stream design case object. ## 4.3.194. Stream_design_case to Stream_phase Each Stream_design_case is composed of one or more Stream_phase objects. Each Stream_phase is defined by exactly one Stream_design_case object. ### 4.3.195. Sub_plant_relationship to Changed_sub_plant_relationship Each Sub_plant_relationship is changed by zero, one or many Changed_sub_plant_relationship objects. Each Changed_sub_plant_relationship changes exactly one Sub_plant_relationship. ## 4.3.196. Supplier to Catalogue_definition Each Supplier publishes zero, one or many Catalogue_definition objects. Each Catalogue_definition is published by zero or one Supplier object. # 4.3.197. Supplier to Supplied_equipment Each Supplier supplies one or more Supplied_equipment objects. Each Supplied_equipment is supplied by exactly one Supplier object. # 4.3.198. Support_constraints to Support_usage Each Support_constraints constrains the motion in the negative x-direction of zero, one or many Support_usage objects. Each Support_usage has motion in the negative x-direction constrained by zero or one Support_constraints object. Each Support_constraints constrains the motion in the positive x-direction of zero, one or many Support_usage objects. Each Support_usage has motion in the positive x-direction constrained by zero or one Support_constraints object. Each Support_constraints constrains the motion in the negative y-direction of zero, one or many Support_usage objects. Each Support_usage has motion in the negative y-direction constrained by zero or one Support_constraints object. Each Support_constraints constrains the motion in the positive y-direction of zero, one or many Support_usage objects. Each Support_usage has motion in the positive y-direction constrained by zero or one Support_constraints object. Each Support_constraints constrains the motion in the negative z-direction of zero, one or many Support_usage objects. Each Support_usage has motion in the negative z-direction constrained by zero or one Support_constraints object. Each Support_constraints constrains the motion in the positive z-direction of zero, one or many Support_usage objects. Each Support_usage has motion in the positive z-direction constrained by zero or one Support_constraints object. Each Support_constraints constrains the negative rotation about the x-axis of zero, one or many Support_usage objects. Each Support_usage has the negative rotation about the x-axis constrained by zero or one Support_constraints object. Each Support_constraints constrains the positive rotation about the x-axis of zero, one or many Support_usage objects. Each Support_usage has the positive rotation about the x-axis constrained by zero or one Support_constraints object. Each Support_constraints constrains the negative rotation about the y-axis of zero, one or many Support_usage objects. Each Support_usage has the negative rotation about the y-axis constrained by zero or one Support_constraints object. Each Support_constraints constrains the positive rotation about the y-axis of zero, one or many Support_usage objects. Each Support_usage has the positive rotation about the y-axis constrained by zero or one Support_constraints object. Each Support_constraints constrains the negative rotation about the z-axis of zero, one or many Support_usage objects. Each Support_usage has the negative rotation about the z-axis constrained by zero or one Support_constraints object. Each Support_constraints constrains the positive rotation about the z-axis of zero, one or many Support_usage objects. Each Support_usage has the positive rotation about the z-axis constrained by zero or one Support_constraints object. # 4.3.199. Support_usage_connection to Plant item connection occurrence Each Support_usage_connection is detailed by zero, one or many. Plant_item_connection_occurrence objects. Each Plant_item_connection_occurrence gives the details for zero or one Support_usage_connection object.